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I ABSTRACTI

This report discusses continuations of the work reported in Special

Scientific Report No. I on this same contract. Part 1 (Threshold Logic)

consists of a comprehensive survey of threshold logic, a geometric result

relevant to estimating the number of threshold functions, generalizations and

strengthening of known bounds on the logical capabilities of threshold gate

networks, computer-aided work on the realization of arbitrary functions by

networks of three-input majority gates (including a list of realizations for

every type of four-argument switching function), and a comparison of two

5 methods for synthesis of very large threshold gates: the well-known Bayesian

approach and a geometric alternative. The latter method is shown to be

* preferable.

Part 2 (Reliability of Switching Networks) presents a survey of several

5 important schemes for introducing redundancy into a combinational network

for the improvement of reliability - comparisons are made with the recursive

triangle system (see Special Scientific Report No. 1); some extensions of

the previous analyses of recursive triangles (specifically, more general

results on the "and" function, study of a nonsymetric function, ABvCD, and

generalization to the "nor" function); and initial results on the incorpora-

tion of memory and feedback to allow the use of fewer basic gates in a time-

5 shared fashion.
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PREFACE

The two major parts of this report cover the two branches of our in-

vestigation of the theory of adjustable switching networks; Threshold

Logic and Reliability of Switching Networks. Each part thoroughly

stumarizes and analyzes the research performed during the last year.

Research performed in the first year of the contract has been reported I
in Special Scientific Report No. 1; the present report should be considered

a continuation of the latter, where definitions, motivations, his- "r

torical background, etc., can be found. Work on the theory of adjustable .1
switching networks is continuing.

i
A c,-ulative list of the Scientific Reports issued on this contract

follows:

Scientific Report No. 1. Winder, R. 0., "More About Threshold Logic",

AFCRL 702, July 14, 1961. J
Scientific Report No. 2. Brzozowski, J. A., "Reliability of Triangular

Switching Networks with Intermittent Failures",
AFCRL 785, August 14, 1961. .I

Scientific Report No. 3. Levy, S. Y., "Triangular Rectifier Networks",
AFCRL 786, August 23, 1961. [

Scientific Report No. 4. Miiller, H. S., Winder, R. 0., "Majority Logic
by Geometric Methods", AFCRL 792, July 13, 1961.

Scientific Report No. 5. Amarel, S., Cooke, G., Winder, R. 0., "Majority
Gate Networks", AFCRL 793, August 14, 1961.

Special
Scientific Report No. 1. Amarel, S., Levy, S. Y., Winder, R. 0., "Theory

of Adjustable Switching Networks", AFCRL-62-318,
April 30, 1962.

Scientific Report No. 6. Winder, R. 0., "Threshold Logic in Artificial
Intelligence", AFCRL-63-6, November 15, 1962. 1
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I I. INTRODUCTION

3 Part 1 of Special Scientific Report No. 2 consists of several sections:

Section II and Section VII (References, pg. 39 ) constitute a comprehensive

3 survey of threshold logic. Sections III, IV, V, and VI describe the present

state of several lines of investigation under this contract. (Whereas at the

end of the first year of this contract several primary lines of investigation

had terminated, so that a final-type report - Special Scientific Report No. 1,

Part 1 - was written, this is not the case this year.) The Appendix of Part 1

(Section VIII) is a listing of networks which resulted from the investigations

reported in Section V.

IThreshold logic, especially as reported in Special Scientific Report
No. 1, has been primarily motivated by an interest in computer applications

I- design with threshold gates. Recently, the interesting possibilities of a

second major field of application have become apparent: To define complicated

decision functions of many variables, students of artificial intelligence

almost invariably have used the simple and natural idea of "linear separation"

- their basic functions have turned out to be threshold functions. It seems

that both biological and engineering reasons lie behind this: First, the

psycho-physiological theories of learning and perception (e.g., Hebb) have

Iemployed theories of neural nets (McCulloch and Pitts); these neural models

are, in fact, typical threshold gates. Second, investigators of self-adjust-

ing switching devices have found neuron-like elements to be easily controllable.

Threshold logic has much to offer students of artificial intelligence.

Furthermore, an increased interaction will surely produce interesting new

developments in threshold logic. For example, in Section VI we consider an

important common area between the fields: the synthesis of a single threshold

gate for purposes of pattern recognition. The frequently used probabilistic

approach to the problem is outlined, its main shortcomings discussed, and an

alternative given, which arises from the switching theoretic point of view.

It is shown that the probabilistic results are always worse than the crudest

form of the switching theoretic results.

I1
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Section II provides a general survey of the relevant sections of thres-

hold logic. A guide to the literature is provided, specifically slanted toward

the student of artificial intelligence. This is an attempt to stimulate the I
interest of such people in threshold logic, to make the literature easily

accessible, and to encourage their continued attention. I
The problem of estimating the number of threshold functions, out of all

switching functions of a given number of arguments, is an important one. It j
can be shown equivalent (see Special Scientific Report No. 1) to the geometric

problem of partitioning Euclidean n-space by a certain collection of hyper-

planes. In connection with this approach, Section III reports an important

theoretical step toward a resolution of the problem. Work on application of

the result continues.

In Section IV a generalization of earlier estimates (or more specifically, J
upper bounds) is made. This generalization gives upper bounds on the number

of incompletely specified threshold functions: Suppose m of the possible 2n

input combinations to a gate have given specified outputs associated with them. I
Out of the entirety of 2m such incompletely specified functions, averaging

over the (2n) choices of the m points, less than mn will be realizable with a

single threshold gate. This, for example, puts severe restrictions on the

logical capabilities of a network such as the Perceptron, where adaptation j
is possible on only one threshold gate. Section IV also strengthens an

earlier result of Cameron: The random function of n arguments will require j
more than V2(n+l)/n threshold gates, interconnected in a network, for

realization. A bound for the likely size of networks for realization of

incompletely specified functions is also obtained.

Section V reports computer-aided investigations of the problem of realiz-

ing arbitrary functions with networks of simple three-input majority gates.

Results are incomplete and inconclusive; much work remains to be done. An

outcome of the experimentation, given in the Appendix (Section VIII), is a set

of threshold gate network realizations for each type of four-argument switching

function - the networks have been proved minimal in their number of stages.

I
2 I
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The ideas of Section VI, mentioned above, have introduced two new lines

of investigation, both of which will be studied in the third year of this

contract. The first concerns basic limitations of the Bayesian approach to

threshold gate design. The limitations stem from certain basic "independence

assumptions", necessary for the Bayesian synthesis procedure. The first

theorem of Section VI states that if a threshold function with equiprobable

input combinations satisfies the independence assumptions, it must be a trivial

function. A strengthening of this result is now being investigated: Any

function, with any input distribution, that satisfies the independence

assumptions, must be trivial. In other words, the Bayesian approach cannot

be applied to nontrivial functions with any guarantee of success. Important

consequences for artificial intelligence, and specifically for adaptive

systems of threshold gates, are under study. The second new line of inves-

tigation concerns the switching theoretic countersuggestion to the Bayesian

synthesis procedure, outlined in Section VI; it will also receive more

attention. The development of heuristic programs for the synthesis of

threshold gate networks is also contemplated.

I
I
I
I
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II. SURVEY OF THRESHOLD LOGIC

by R. 0. Winder

Threshold logic areas of interest to investigators of artificial intelli-

gence are outlined, and some problems whose solutions would be significant in

artificial intelligence are suggested in this section.

Most of the threshold logic literature deals with one or more of the follow-

ing three areas: Conditions which functions must satisfy to be threshold functions,

algorithms for determining the existence and nature of realizations, and methods

(heuristic) for synthesizing networks built from threshold gates, often, in partic-

ular, from three-input majority gates (AB + AC + BC). In the following we

discuss the large body of simple transformations and other properties known, then -"

the necessary conditions, one-element test-synthesis, network synthesis, and

finally the more important miscellaneous results, (see [Winder-3] for an earlier

survey). I

A. SIMPLE PROPERTIES I

The following are typical simple facts about threshold functions:

1. Realizing weights and threshold are not unique.

2 All threshold functions can be realized with integral weights and I
threshold.

3. Any pair of (unequal) numbers (i.e., 0 and 1, -1 and +1, etc.) can

be used as the numerical equivalents of the switching variables in I
order to define threshold functions. (The same weights can be used

in different systems; the appropriate thresholds are easily calculated.) I
4. Given a threshold function f, functions derived from f by permuting or

complementing arguments, or by dualizing or complementing f, or any I
combination of these, are also threshold functions. (Again, appro-

priate transformation rules are easy to define.)

A general treatment of these, and most of the topics mentioned below, can

be found in the papers [Elgot], [Gabelman-l], [Muroga-2, 5], and [Winder-l,

4]. These are relatively comprehensive papers, with much duplication of the I
basic material. [Coates-Lewis] P'lso covers a wide range of material, but with

a specific slant toward the test-synthesis problem. 1

41
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I
I B. NECESSARY CONDITIONS

The simplest condition which all threshold functions must meet is

unateness* discussed originally in [Muroga-1], [McNaughton], and [Paull-

McCluskey]. [Paull-McCluskey], [Winder-l], and [Muroga-2] generalize this

condition, obtaining an infinite family of necessary conditions: 1-mono-

tonicity (equivalent to unateness), 2-monotonicity, etc. A function satis-

fying all of these conditions is completely monotonic. [Winder-l, 4] give

the most complete treatment of these ideas, including an important function

due to E. F. Moore of Bell Laboratories -- a twelve-argument function which

is completely monotonic, but is not a threshold function.

Because complete monotonicity fails to characterize threshold functions,

this idea in turn is generalized in various ways in [Elgot] and [Gabelman-l].

[Winder-2, 4] discusses these generalizations further, settling some questions

left unanswered in [Elgot] and [Elgot-Muroga], and concentrating on a second

infinite family of necessary conditions: 2-assummability (equivalent to

complete monotonicity), 3-assummability, etc. A function satisfying all of

these conditions is proved in [Elgot] to be a threshold function. This
necessary and sufficient condition was published about the same time in

[Chow-n]. It is discussed in terms of convex sets in [Highleyman] and [Gabelman-2].

These various necessary conditions have obvious importance in artificial

I intelligence. Even for sparsely specified functions (where most inputs do not

have outputs specified) of many arguments, functions can often be shown to be

I nonthreshold functions by simple observations. More work is needed, however,

to adapt the ideas more specifically to the case of sparse specification, many

I inputs.

I
I

I *A function is unate when it can be expressed by a Boolean expression in

which each variable appears uniformly: everywhere with negation or every-

I where without.

!5
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C. TEST-SYNTHESIS

The question: "Is a given function a threshold functionand if it is, what

weight and theshold assignments realize it?" is easily seen to be equivalent to

the consistency and solution of a certain system of linear inequalities I, on

the weights and threshold as "unknowns" -- [McNaughton]. If the function has n

arguments, I contains 2n inequalities. The theory of k-mwnotonicities can be

used to reduce this system to manageable proportions -- in various forms, most

of the papers to be mentioned in this section make use of ideas equivalent to

at least 1-monotonicity, and often 2-monotonicity. The problem of the equivalence

of these reduced systems It with the original is discussed in [Winder-l, 4]. I
Many different methods of solution for I' have been proposed. Algebraic solution,

which involves successive elimination of unknowns and yields a specification of

all solutions, is discussed in [Elgot] and [Winder-l, 4].

The important idea of solving I by linear orogramming is discussed in

[Minnick], [Stram-l], [Muroga-l], and [Einhorn]. Integers are usually obtained

under a condition that their sum (absolute values) be minium; by a technical

device, integer programming has been avoidable except for some specially con-

structed examples of E. F. Moore and [Winder-2, 4] (thus settling the other open

problem of [Elgot-Muroga]). A game theoretic approach to the solution of I' is I
discussed in [Akers-l1]. Both the linear programming and game theoretic approaches

produce just one realization, or else prove that there are none.

The procedure of [Coates-Lewis] and [Coates-Kirchner-Lewis] is a specialized

algorithm which algebraically produces a single solution, or proves that there are

none. A geometric, heuristic procedure is described in [Stram-l, 2]. In

[Dadda-l, 2] methods suitable for small n are given. In [Varshavskii-l] a

fallacious procedure is summarized.

The question of obtaining minimal integral realizations (the sum of absolute

values of weights and threshold minimized) is very nicely solved in [Gabelman-1,

3 ; the procedure is refined and rigorously established in [Winder-4]. Synthesis

when the function is incompletely specified is treated in [Winder-I, 4] (alge-

braically, with not too many inputs unspecified) and in [Singleton] (by matrices,

with not too many inputs specified). The intermediate problem has obvious import-

ance in artificial intelligence and in character recognition; the ideas described

in [Winder-6] (and section VI of this report) may provide a start in this direction. 3

6
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I
All methods discussed above (except those of rWinder-61) are switching-

theory oriented, in the sense that they work exactly, and are not feasible when

the number of arguments becomes large (over 20, say). It is likely that arti-

ficial intelligence motivations will soon be producing some useful results for

large n (and for largely unspecified functions).

D. NETWORKS

The question of synthesizing a given function in a network of threshold

I gates is a typically difficult switching theoretic problem. (A single threshold

gate realizes a threshold function; a network of threshold gates corresponds to

a composition of threshold functions.) It has been considered under various

constraints: In computer design applications, tolerance considerations dras-

tically limit the number of inputs that can be allowed. [Muroga-4] is a general

discussion of this; [Muroga-5] goes into important details. There are several

pa;ers on synthesis by networks of three-input majority gates (AB + AC + BC),

[ the simplest threshold functions beyond the conventional NOT, OR, AND, and their

variants. The methods can be divided according to the means of function repre-

[sentation: Working algebraically, [Lindaman-l,2], [Cohn-Lindaman], and

[Akers-2] discuss various transformations, analogous to the ordinary Boolean

transformations, which may be helpful in synthesis. [Winder-4] gives an axiomatic

treatment which may be helpful in synthesis. [Winder-4] gives an axiomatic

treatment which may be more useful in this context than that of [Cohn-Lindaman].

A geometric approach is described in [Miiller-Winder], and results on all four-

argument functions are reported in [Winder-5] (and in Section VI of this report).

(Akers-31 employs truth tables in interesting fashion.

The synthesis of a specific class of functions -- symmetric functions -- has

been treated in [Muroga-21, [Minnick], and [Kautz].

A geometric approach to the unrestricted problem is described in [Winder-2,

4], where the question of determining whether a given function can be realized

using just two threshold gates is answered. An algebraic method, where con-

straints on the magnitude of the threshold can be made conveniently, is given in

[Lewis-Coates]. [Varshavskii-2 summarizes an interesting construction, and gives

a startling (but false, see below) "theorem" that a function of n arguments can

always be realized in a network of n + 1 threshold gates. Many of the one-element

!7
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test-synthesis procedures discussed above go on, when a function is shown to be

nonthreshold, to produce a network in heuristic fashion. Typically, several

fragmentary functions are OR'ed together. A heuristic modification of linear

programming is used in [Minnick] to produce a table of network realizations for

all (classes of) 4-argument functions.

The network synthesis is just beginning, and so far is restrained to very

small n (less than 10). Perhaps the most promising approach for the (heuristic)

design of large-n two-level networks (several "upper-level" gates feeding a

single "output gate", as in the Perceptron, etc.) lies in the methods of

[Winder-2, 4], where failures of the k-monotonicity tests are used to specify

appropriate upper-level gates -- i.e., each upper gate can make the final decision

as a threshold function. (Incidentally, the conjecture that the output gate can I
always be taken as a simple many-input majority gate, still yielding optimal

networks, can be disproved by counterexample.) I

E. OTHER MAJOR SUBJECTS I
The parameters of [Chow-2] are used implicitly in Section VI. Besides

their practical use, the paper cited opens up a theoretically very interesting

possibility that threshold functions may be characterizable by their parameters

[the m(fx ) and m(f)].

A large number of "functional properties" of threshold functions, dealing

with various combinations of functions, chains of functions obtained by varying

threshold, duality relations, classification by prime implicants, and similar j
ideas, are treated in [Muroga-2, 3, 6], [Elgot], and [Gabelman-l]. These ideas

are rather of theoretical than practical interest, and at present do not appear J
to have much bearing on artificial intelligence.

Rn, the number of threshold functions of n arguments, has been shown to

be bounded above ([Muroga-2] [Winder-1 4), [Cameron]) and below ([Goto-

Takahasi], [Muroga-2, 6]) as follows:

20.33n2 < R < 2n < < 2 (n > 1),n I

I



I
where 22n is the total number of switching functions of n arguments. Thus

threshold functions become a vanishingly small proportion of all functions,

as n increases. [This suggests that the often-used idea of randomly chosen

upper-level threshold gates in a 2-level network is likely to require the output

gate to realize a nonthreshold function. A rational procedure, such as that

mentioned in the section on networks, is much more likely to work with fever

upper-level gates. In particular, tentative ideas indicate that the output

5 gate, not the upper-level gates, should be partially specified at the outset

(for example, the weights' signs, and possibly their relative absolute magni-

3 tudes, might be determined on a heuristic or random basis); then existing

methods, as mentioned above, can be used to specify appropriate upper-level

gates (and the output gate), even for very sparsely specified, many-input

functions. (Modifications for iterative synthesis would be required.) As

noted earlier, the best networks are obtained by allowing the output gate to

be as complicated as is needed.] In [Cameron] it is shown, using the upper

bound, that networks to realize given n-argument functions will for most func-
n/ 3tin require exponentially many trsodgates -- something like 2

Bounds on the size of integral weights that will be required for some functions

are found in [Myhill-Kautz] and [Muroga-5].

In Section IV of this report, generalizations of these results are made:

Bounds on the number of imcompletely specified functions realizable by a

single threshold gate are obtained, and are applied to indicate fundamental

limitations of the Perceptron-Pappa-Pandemonium type networks of threshold
n+l

gates. Cameron's bound, 2n/3, is improved to -1 22. In Section III a
theoretical geometric result is obtained which may lead to further improvement
of the various bounds.

The classification and enumeration of classes, for threshold functions,

I have been studied in [Winder-l,4] and [Muroga-l]. Tables listing representa-

tives of all six-argument threshold functions, with minimum integral reali-

I zations, are to be found in [Winder-4] and [Muroga-6]. A more efficient

classification scheme has recently been described in [Goto-Takahasi]: relevant

results are in [Muroga-5].

Two variants of threshold logic are discussed in [Ercoli-Mercurio] and

I [Hotz].

I 9I



III. PARTITIONS OF N-SPACE BY HYPERPLANES

by R. 0. Winder

The following problem has arisen in the field of switching theory

(i.e., computer-motivated mathematical logic): Given a well-defined set of

m (n-l)-dimensional linear subspaces in n-dimensional Euclidean space, all

passing through some given point, to find the number of regions into which I
the n-space is divided by the m "hyperplanes". We will develop below a

formula for this quantity which seems to be of general mathematical interest.

The best result to date has been a formula for the special case of

the hyperplanes lying in "general position" (in a sense which will be made

explicit later). The hyperplanes of the original problem failed to satisfy

this condition -- the formula provided, then, an upper bound on the desired

quantity. The formula is ("B" for "bound")

B-

See* [Winder-lJ, (Cameron). iI

Definition: A set of k (n-l)-dimensional "hyperplanes" in n-di-

mensional Euclidean space, all planes passing through some given J
point, is nondegenerate if the intersection (a linear subspace of

generally lower dimension) has dimension n-k. If the dimension is T

of different parity than n-k, the set is odd-degenerate; if the

dimension has the same parity as n-k, even-degenerate.

The term "general position", used above, is defined by the property

that every set of n or fewer of the given m planes should be nondegenerate.

Theorem: The number of regions into which m hyperplanes, all

passing through some common point, divide n-space is equal to the

number of distinct even-degenerate subsets of the given m planes I
minus the number of distinct odd-degenerate subsets. (The empty

subset is included and is counted as even-degenerate.) j
Example: Suppose that the set of m planes are in general position.

Then the number of regions is I

*D. T. Perkins, D. G. Willis, and E. A. Whitmore, of Lockheed (Missiles and I
Space Division), have not published their early results on this problem.

10
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S(1) + + ... +:-( ,) + (.:2) -(.:3) + ... (:M), (2)
because each subset of n or fewer hyperplanes, counted in the first (n+l)

terms, are nondegenerate, and so even-degenerate, and thus are counted positively

in the sum. All subsets of more than n hyperplanes have just a point in common,

i.e., their intersection has dimension 0. Thus we have the alternating signs

for remainder of the expression. But

( n+i+1 - (1,)m ,- 0. (3)

i-O

Adding corresponding terms in (2) and (3), we have

l =. ,[(m,)+ (m3)+(_)+... ] (4)

I where the last term is (m) or (m). But

!ssusttn i ( ( if ,

o substituting in (4) (except for(m) if it's present), we obtain Bn as

given in (1).

I Proof of theorem: We proceed by induction on m. For m-, there are

two subsets -- the empty set and the given hyperplane, each of which are trivially

wnondegenerate, and so even-degenerate. Thus the theorem would predict two

regions, which isof course,correct.

I Supposing the theorem verified for sets of m or fewer hyperplanes, we

consider a set of (mi+i) distinct hyperplanes (m > 1), HO, HI, ... , Ha, all

passing through some common point. Suppose we denote the number of regions that

they divide n-space into byH.oy,,, .... H

We now select one of the planes, say H0, and will prove the following:

!11



n n

n-i

+ HoHI, HoH2, .. , HoH I(6)

where H0H i represents the intersection of the two planes, and the right-hand

expression of (6) represents a subdivision of the hyperplane H0 (an (n-l)-di-

mensional Euclidean space in its own right) by its intersections with the other

planes (since the hyperplanes are distinct, and since no pair of hyperplanes

is parallel, the intersections HoHi are, indeed, (n-2)-dimensional "hyperplanes"

in H0 ). Although the hyperplanes H0 , H1, ..., Hm are distinct, the entitiesMI
HH,, HoH2, -.. , H0 H M may not be; when we enclose them by brackets we are

thinking of the set, which may then have less than m members.

Justification of (6) will not be completely rigorous; we rely on the

reader's intuition: Consider n-space as partitioned by the hyperplanes 3
Hi H2 , ..., Hm . When a new hyperplane H is introduced, how many regions are

affected? Clearly,only those into which H0 enters, and enters to the extent

that it has an (n-l)-dimensional intersection with them. Each such region is

clearly cut into two pieces, since the regions are simply connected (they are

bounded by hyperplanes) and the separation is by a hyperplane. Thus the new I
number of regions is just the old, plus the number of (n-l)-dimensional regions

into which H0 is cut by intersections with the original hyperplanes. (To say

it slightly differently: Each piece into which Ho is cut acts as a divider in

some one of the original regions, thus adding one region to the previous total.)

This establishes (6). "1

Now for the induction step: By hypothesis, the middle term of (6) is

equal to the number of even-degenerate subsets of H ... , H Iminus the

number of odd-degenerate subsets. This accounts for all subsets of 0,HI,...,H i-

that don't involve H0 ; the induction step will be complete if we can show that

the number of even-degenerate subsets containing HO, minus the number of odd-

degenerate subsets containing HO, equals the final term in (6). But by hypothesis,

the final term is equal to the number of even-degenerate subsets of

12
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~HHJ, -. , H 0H; in H0,minus the number of odd-degenerate subsets.

Suppose we number the H, so that H0 H1, H01H2, ... , H0 Hp are distinct, while

each of H0Hr ..., H0 H is a duplicate of one of the first p. Now consider

any subset o H o 2 ,H ... , 0HHkI where each i. <p. The intersection

1 2  Oik O, . 7
I

HH1/ \) (Hk/ 12 ik

Note that the degeneracy (odd or even) of the subset f HoHi I HOH.}i

(n-)-space is the same as the degeneracy of the subset HOHiH ,'..., Hik }

I in the original n-space (because in the latter case the spatial dimension is

one greater, and the number of planes is one greater, while the intersection --

and its dimension -- remains unchanged, by (7)). We have proved this equivalence

for all subsets of { HoH, , ..., HoHp } since here there are no duplizates. Thus,

the right-hand side of (6) equals the number of even-degenerate subsets of

I { H0 ,R1, .. , Hm} except those containing H0 and at least one of Hp 1,'°., H,

minus the number of odd-degenerate subsets with the same exception. If we can

show that the sum corresponding to this exception is zero, the proof will be

I complete.

So consider H By assumption, for some r < pIp+
HR - Hr (8)

I 13
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corresponding to such a pair -- call them H 0 o H, and H Hr H p+,

for some "product" of hyperplanes Multiplying (i.e., intersecting) each side

of (8) by IT H p+ we see that the intersections are equal:

H0 p+ 0 TI Hr Hp+ I  (9)

Thus the dimensions are equal. And since the number of hyperplanes in the

corresponding subsets differ by one (Hr), one of the subsets must be even- J
degenerate, and the other odd-degenerate. Because of this cancellation, we can

strengthen the next-to-last sentence of the previous paragraph: The right side

of (6) equals the number of even-degenerate subsets of{ Ho, H1, .- , Hm} I

except those containing H0 and at least one of Hp 2 , ... , H, minus the number

of odd-degenerate subsets with the same exception. I
Now we repeat the argument with Hp+2, then again with Hp+3, and so on,

until the exceptions are removed: The left side of (6) equals the right side

of (6), which equals the number of even-degenerate subsets of H0 ,HI,..., H}

minus the number of odd-degenerate subsets, QED.

1
I
I
I
I
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I IV. BOUNDS ON THRESHOLD GATE REALIZABILITY

by R. 0. Winder

It is well known* [Winder-1], [Cameron] that the number of threshold

i functions of n arguments is less than

n

-B Z (2 n_1)
B= i-o

Using this bound, Cameron [op cit] shows that the number of n-argument functions

realizable by a network of at most k threshold gates is (asymptotically) less

than 2k
3 . As Cameron pointed out, this implies that at least one switching

function of n arguments (and probably most of them) requires more than 2
n/3

I threshold gates Zor realization. The purpose of this note is to generalize

these results to functions incompletely specified; an improvement in the

I asymptotic bound 2 
n /3 will also be obtained. Applications in character recog-

nition and self-organizing systems are discussed.

I The basic bound Bn is derived from the following basic lemma (see

[Cameron] for a good discussion of its proof - the proof in [Winder-4] is

I virtually identical, but less well explained):

Lemma: If m hyperplanes are passed through the origin of an (n+1)-

dimensional Euclidean space, the space is divided into a number of

regions at mostn

n I (m. .
i=o

The bound Bn is then obtained by considering an (n+1)-dimensional

"realization space" - the space consisting of points win (a0, a,, ..., an),

I each of which represents the realization of some threshold function (a bias

and n weights). (We assume a ± 1 logic.) By taking all possible choices of

sign, we consider 2n hyperplanes

±a I ± a ±a =0.

Two points in the realization space represent the same function if and only

*D. T. Perkins, D. G. Willis, and E. A. Whitmore, of Lockheed (Missiles and Space

Division), have not published their early results on this problem.

*i1
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if they are not separated by any of these hyperplanes. Thus the regions,

with boundaries defined by these hyperplanes, correspond one-to-one with2n

threshold functions. Thus setting m - 2 in the lemma gives Bn

Now: Suppose we select exactly m out of the 2n possible input combi-

nations. How many switching functions, no two of which agree in value on

all m of these points, can be realized by a single threshold gate? Clearly,

by the same argument, there are at most B . (Because the m points correspondn
to m of the hyperplanes, and again, we are asking how many regions the reali- J
zation space is divided into, here by m hyperplanes.)

Bounds on B are easily obtained: I
n

2 (m_) - 2 ( -l)[1 + n  + n(n-1) + + n! ] ISm-n (m-n)(m-n 1) "" -n..-|

<2 (m-+\1  + + + + 1+2
mnJ1[I rn-n (m-n)2 +(m-n)3 + J

m-n ' )3 ..

-2 (mn) - .2 (n ) m-2n

rn-n

(providing n < m-n, i.e.,m > 2n, which we henceforth assume). So

<2 (m-l)(m-2)...(m-(n-1))(m-n) . m-n
n n! m-2n

Assuaming m > 3n + 2 and n > 2, which we do henceforth, we take four of the

right-most factors above: I

(m-(n-l))(m-n)(m-n) - 2

m- 2n (m (M m-2n.~

(-(n-I))(m + n2) I

im2  n2+n-2-n 2  
_ 

1____
n+2 n+2

< m2

16 1
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So 2mn  nSo

II
(we use the relatively sloppy bound mn because of its convenience; sharper

I results below can be obtained using 2mn/n!). Sumnarizing:

Theorem: When exactly m points only are considered, at most

n< 2,n <
n._

essentially different functions can be realized with a single thresh-

old gate.

Rule-of-thumb: When m > n log2m, single-gate realizability is

improbable.

Justification: The total number of switching functions specified on

exactly a points is 2m 
. When im > mn, we have that all such functions cannot

be single-gate realized. Because of the rather generous approximations made

in deriving the bounds, it seems reasonable to say that by this point, most

functions cannot, in fact, be single-gate realized; hence,the rule-of-thumb.

(Strictly speaking, we can only say that when 2e/mn > a, i.e.,m > n log 2m

+ log 2 a, we have at best a ]/a chance of realizing 
a random function,

specified on m points. Taking a - 1000, for instance, however, affects the

-application very little.)

An example: Suppose we have a Perceptron-Pappa-Pandemonim type

- network of threshold gates, i.e.,a large number of randomly chosen threshold

- gates (A units) accepting inputs from some "retinal" field, and supplying,

- say, n - 100 inputs to an output threshold gate (the R-unit). Although the

first level of gates is fixed, we are free to choose the weights and thres-

I hold of the final output gate as we please. What chance, then, have we of

distinguishing between two given different types of pattern on the retinal

field? Applying the rule of thumb, we see the following: If there are
m = 1000 or more (out of the total of 2100 - 10 30) input configurations in

the two patterns, upon which we want the network to discriminate reliably,
we probably will not be able to find any choice of weights and threshold

that will work.
17



A valid objection to this type of argument is the following: The

actual patterns that we want, in fact, to discriminate between, are not

random - they are likely to have natural regularities and redundancies,

which may make them more easily realizable than these enumerational sta-

tistics would indicate. However, in the case of Perceptrons, etc., note

that the first level of randomly connected gates has served to eliminate

such regularities! The Perceptrons, etc.,therefore are at the mercy of

these statistics; tne possibility of true generalization, where surely

m >> 1000 is required, is remote indeed.

Up to this point we have been considering single-gate synthesis.

Suppose we now investigate the capabilities of networks of threshold gates.

Let k be the number of gates in a given network, n and m defined as before,

relative to the overall function produced by the network. Generalizing

and strengthening Cameron's [op cit] arguments, we can prove

Theorem: When exactly m points only are considered, a network

receiving n external inputs, and consisting of k threshold gates,

can realize at most

m(nk + k(k-l)/2]

essentially different functions. j
Proof: We assume that there are no feedbacks in the network, so that

there is some order of gates: 1st, 2nd, ... , kth. The 1 s t receives

just the externally provided n inputs, the 2nd receives these plus the out-

put of the lot, etc., and the kth receives the basic n plus the output of

the k-I earlier gates, and supplies the network output. On the m specified

input configurations, the 1st gate realizes at most mn threshold functions.

For a given choice of function, the 2nd gate is also presented with at most

m specified input configurations, and so can realize at most m (n+ |) functions.

And so on: The kth gate can realize at most m (n+ k -1) functions. The totalI

number of functions calculable by the network (with regard to the originally

chosen m points) is, then, at most

Mn n+M n+k-1 [nk + k(k-l)/2]

END OF PROOF.
18 I
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Rule-of-Thumb: When

I a < [nk + k(k-1)/21 log 2m,

a network of k gates will not suffice for most functions.

Proof is as for the previous rule-of-thumb.

I An example: Consider a character-recognizing system with n = 100, and

suppose a - 8000, i.e.,8000 variations on a given character are to be recog-

Inized. By the above, then, one would expect to require k - 6 threshold gates

for realization, at least. Of course here the well-behavedness of naturally

arising functions can be expected to help; the bound is only a rough approxi-

mation of what might be needed.

I Corollary: For completely specified functions (m - 2n), if

I k< -L + 1 2+2 1
22n .9

then realizability in a network of k gates is improbable.

Proof: Substitute m - 2n in the above rule-of-thumb and solve for k.

The bounds hold from n - 4:

I n k n k n k

4 1 10 8 16 77
5 2 11 12 17 109
6 2 12 18 18 154
7 3 13 26 19 218
8 4 14 37 20 305

I9 5 15 54

re+i

and above n - 20, the bound is very close to the dominant term: n 2

(This is a substantial improvement over Cameron's asymptotic bound of 2n/3

I
I
* 19
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V. NETWORKS OF 3-INPUT MAJORITY GATES

We report here on an introductory exploration of synthesis

methods for networks of 3-input majority gates. The results obtained

were largely negative, so that the discussion will be brief.

A 3-input majority gate (called henceforth a 3-ate) realizes

the switching function I
maj (x, y, z) - xy + xz + yz - (xyz)

denoted, in this report, by the parenthetical closure of three arguments 1

(as on the right). The synthesis problem is: Given an arbitrary switching

function, find a network of 3-gates which realizes it. Minimality criteria

may include the number of gates and the depth of the network (i.e., the

maximal stage delay). I

It was decided to study first functions of only four arguments.

Computer programs (for the RCA 501) were written debugged, and run to I
experiment with various trial synthesis procedures. The first of four

programs written converted the Harvard Computation Laboratories list of I
238 four-argument P sy metry types into a list of easily manipulatable

truth table representations in the RCA 501. Subsequent programs used this

data, so that a trial procedure could be tried out (in effect) on every

one of the 65,536 four-argument switching functions. I

Program number two was written to try out a simple "synthesis-

by-expansion" idea, just to see how it works. The expansion theorem:

P - (yx P-) (yi P ) y;x y y

was taken from [Cohn-Lindaman]. Its effect is to replace the problem of

synthesizing Px by the problems of synthesizing P_ and P separately, where j
x y y

y can be chosen so as to make these problems simpler, - all at the expense

of three 3-gates. Program number two made the following ten substitutions

for x and y:

(x,y) - (w,O), (w,x), (w,y), (w,z),

(x,0), (x,y), (x,z), (y,O), (y,z), (z,O).

20



I
Thus in each case P and P- had only three arguments, with known optimalIy y
realizations. The number of gates required for each substitution for each

function type was printed out. Choosirg the best of the ten for each type,

an average of 6.2 3-gates was required; this is surprisingly good, although

far from the optimal networks obtainable. At most four stages are required

by this expansion - all four were usually needed. The experiment showed

that all ten of the basic expansions should be considered - the range from

best to worse over this choice was large (e.g., from 6 to 11 gates were

required, depending on the choice of expansion variable).

I Program number three was written and run to find all two-stage

3-gate realizations that exist for 4-argument symmetry types. A modified

I form of the method of [Miiller-Winder] was used. Of the 238 symmetry types

52 were found so realizable. These results gave known optimal networks,

then, for a large number of the functions we were studying.

Program number four was our first serious try at a general

synthesis method; it was intended to apply to functions of any number of

arguments. The algorithm is as follows:

I (i) Initialize by listing all functions of the given input

variables that can be realized by a single 3-gate. Then go through the

following steps repetitively until a realization is found, or patience is

exhausted.

j (ii) Choose the k functions in the list which are most similar

to the given function to be realized (i.e.,which agree for the most input

I specifications). [If any agree exactly, exit.]

(iii) Take all possible triples from this set of k, forming the

majority of each triple, and listing the resulting realized functions to

replace the previous list of candidates. Return to step (ii).

I The number of gates in the final network (when one is obtained)

is (3 1-1)f2, where m recursions were required. The results of the appli-

cation of this algorithm to the 238 4-argument symmetry types were

disappointing. Unfortunately, the experimentation ended before the reason

for this was satisfactorily established (bugs in the program? faulty intuition?

too small a k used? - we used k - 10. etc.).

* 21
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To complement the positive results of program number three (the

2-stage realizations) and to round out the study of four-argument functions,

a long and tedious hand application of modifications of the [Miiller-Winder] I
method was made. Instead of treating each of the 238 Harvard PN symmetry

types, we used a new and better classification method of (Goto-Takahasi].

By this method, only 83 types, called SD (for self dual), are needed. The

hand calculations involved first a derivation of a set of 83 SD repre-

sentatives (which are listed in the appendix) and then a realization of each,

in an attempt to obtain 3-stage realizations for all 4-argument functions.

(The average number of gates needed was 6.9, 2.8 stages average.) All but

two SD types were 3-stage realizable (the realizations are listed in the I
appendix.) The two exceptions were the parity function and the "almost-

parity" function (differing from the parity function at exactly one point).

It was found possible to prove that neither of these functions

are 3-stage realizable, by the following argument: If a function f is

3-stage realizable, then f - maj(g,h,i), where each of g, h, and i are

2-stage realizable. The results of program number three identified the 19

SD types which are 2-stage realizable; these, then were the only candidates

for g, h, and i. The next step in the argument is to note that since f

agrees with the majority of g, h, and i at each of the 2n input points (there

are four arguments, and the representative SD types have five arguments, so

n = 5), the sum of the number of agreeing points between f and g, f and h,

and f and i, respectively, must be at least 2 x 2n . By considering the 17

cases, however, it was found that none agreed with the parity function in

more than 20 positions, so the sum could not exceed 3 x 20 < 2 x 25. Thus

the parity function is not 3-stage realizable. Similarly, only two 2-stage

realizable types were found which agreed with the almost-parity function in

more than 20 places; and they agreed in only 22 positions, so both would be

needed to realize it. But by [Miuller-Winder] methods they did not suffice.

Thus neither the parity function nor the almost-parity function can be

3-stage realized by 3-gates. Since we know all functions 2-stage realizable

(by program number three), we have proved that the realizations listed in

the appendix are minimal in number of stages (if not number of gates).

Summarizing (these data were reported in [Winder-5]):

22
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I

Minimal Number Number of Number of
of Stages SD types Functions

0 1 10

1 1 80

2 17 10,260

3 62 55,152

4 2 34

1 83 65,536

I General conclusions: The study has only just begun. Expansion

methods deserve more attention. Work on more ambitious general programs

should commence with an analysis of program number four, and further experi-

mentation with it. The realizations obtained by hand should be analyzed.

I Comparison with the methods of [Akers-3] should be made. (Akers has run

ten of the 83 types with his program, obtaining two realizations definitely

better than our hand calculations, two realizations definitely worse, two

identical, and four that use fewer gates but more stages. Over these ten,

he averages 4.7 gates, 3.4 stages, as compared with 5.9 gates by the simple

expansion program (number two) and somewhat less than four stages, and

compared with 5.5 gates by hand, and 2.7 stages.)

I1

I
I
I
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VI. TWO METHODS OF THRESHOLD GATE SYNTHESIS
by R. 0. Winder

The optical recognition of characters is a commercially important problem; much of
what is said below is significant in this area. Pattern recognition, a generalization of
character recognition, plays many roles in artificial intelligence. As Minsky* sees it,
for instance, one wants a computer to categorize the various problems presented to It
into patterns, in order to choose suitable methods of solution. To do this, the computer
determines, for each incoming problem, whether or not it satisfies each of a list of
properties. (The analogous procedure is usually followed in optical character recognition.)
If we call this list of properties an input vector, then the final step in the process is;
Given an input vector, to determine into which category the given problem is to be placed; I
each category has a set of associated methods to be used in solving the problem. Without
loss of generality, we will restrict ourselves to the question of determining whether or
not the given input vector belongs to a single given pattern.

This reduces the problem to switching theory: To accomplish the last step in pattern
recognition, a certain switching function of the input vector must be computed. (If the I
input vector belongs to the pattern, the value of the function for that vector is 1, other-
wise 0.) Theoretically, switching theory could be used to realize such a function. How-
ever, because the number of inputs is often far too large to be handled by conventional I
switching theory, and because the function cannot be completely specified in practice, the
following procedure is often followed to design a decision network. (We follow Minsky's
excellent discussion of the matter. *)

A. BAYES NETS

We make several assumptions. First, we "assume that the situation is basically
probabilistic" (Minsky). Next, we assume that we know, or can estimate, certain I
conditional probabilities: the probability of the ith property holding, given that the input
vector belongs to the pattern. Finally, we assume that these probabilities are, in a
sense described below, independent. Now we can design a system which is able to I
compute the probability that a given input vector should be assigned functional value 1 or
0 (in or out of the pattern). When several possible patterns are being considered, the
system might classify by choosing the pattern with the highest probability. More I
generally, we specify levels of confidence, so that the machine may fail to classify
certain unusual problems; in our case of a single pattern, a confidence level A > 1/2
would be used.

* M. Minsky, "Steps Towards Artificial Intelligence", Proc. Inst. Radio Engrs.

Vol. 49, pp. 8-30, January 1961.
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I
More explicitly, suppose the inputs are associated with variables

x = (x1, x2 ..... , xn)

I and a particular state of the Inputs is represented by

I i =  a"1 2-' t. ' n) "

We are assuming that we know the probabilities

Pi = Pr(x = 1 I f( x) = 1)

Sr = Pr(x 1 I f(x) = 0)

and
I PO Pr(f() = 1).

From these we obtain the related probabilities

I 1 - Pi = Pr(xi =01 f(x) =1)

I - r. = Pr(x =01 = 0).

i The independence assumption is that

PrC 
n

Px f f(X) 1)= 1 Pr(x= I fCx)= 1)I 1=1

and similarly with f (Cx) = 0.

Now we use the Bayes law, writing

I-- Pr(fx) 1mand x= )Pr(f x) = I I )Pr(x=

=Pr~x = j I f~x) =1) Pr(f x)=1)

Thus Pr(f(t) = 1) = Pr(f(x) = 1 Ix =-

Pry CX) =1)
= Pr(x = I f(ix) :1) •

I



Three alternatives are available: 1) We can write Pr(x -T) in terms of the probabilities
given us*, yielding somewhat more complicated rules than we obtain below, 2) We can
follow Minsky's discussion, taking at this point a maximum over the quantities

Pr~x = Z i f~x) = 1) = ri Pr(xi  f ix() =1

for the various patterns (f's), or 3) We can assume at this point that the i are equiprobable,
so that Pr(x = f ) is independent of t. To simplify the illustration and future
computations we chose the last alternative.

If Pr(f() = 1) is calculated to be greater than some confidence level, then, we
will ask the machine to guess that f (j) = 1(i.e., to classify an incoming problem into
the corresponding category). Otherwise, f ( ) = 0. We convert this calculation into
the characteristic threshold function form as follows:

Pr(f(A) = 1) A if and only if

lPr(x j I ' f( 2.1)- A " Pr(fx = 1) if and onlyiff

Pr(x ) = - A Pr if and only if

f Pr(f(x) = 1)

11 Pr(xl =  f fX) = 1) > (for appropriate 6) T

i Pr(xi = 0 I f(x) = 1) if and only if

Pr(xt =i I f(x) = 1)
log Pr(x 0 f f) = I)- log 0 if and only if

i i

where Pr(x = 1=

a =log Pr(x 0 f(;)=
Pr(x i = 0 I f(x) =1

and T = log 0. T can be calculated from the various probabilities that we know, as
are the aI, but the general philosophy here is to generate the aI as specified, and to
pick the T so as to optimize performance.

M. E. Maron, 'Design Principles for an Intelligent Machine", IRE Trans. Inf. Theory,

Vol. IT-8, pp. 179-185, September 1962.
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We will now discv,;s '!i- ...lUowing question: If we intend to use a threshold func-
tion for the recognition .'m ,iurm, does the above-stated point of view provide the best,
or even good, sets of wefgh' a "?

Saul Amarel (RCA L .bow-Itories) has suggested that the independence assumption is a
very severe one, and that only a small proportion of threshold functions might actually be
realized by the above procedure. This observation has motivated the investigations re-
ported below - indeed, using the same data, a simpler rule will be shown to work better,
and allow a startling improvement; a nonprobabi sticswitching theory viewpoint is applied
to obtain these results.

We facilitate a comparison by considering the following situation: All 2 of the
are given equal probability of occurring, and each f (C) is specified. We assume that f
is a threshold function. Probabilities are obtained simply by counting frequencies:
Let fxi be the restriction of f obtained by setting x i = 1, fRi obtainedbysettingxi

= , and let m(f) be the number of different i such that f( 4) = 1. Schematically,
suppose the 2 n possible are mapped as in the diagram (f (- ) = 1 in the shaded
area, 0 otherwise):

If A, B, C, and D are the number of input vectors in the four regions, respectively,
thenA = m(fx), B = m(f x), C = m(fx), and D = m(f-). Note that m(f) = B +
D = m(fx) + m(fx), m(fx) + m(fx) = 2 n-l, etc. Since the are

equiprobable, we have
irn (f x

Pi = m(f)

m (f-x i)
Sri = m()

m m(f)

PO = 2 n

I
I
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Theorem: The independence assumptions hold only for constant functions and func-
tions which are the identity (or complement) in some argument.

Proof: If f is constant (0 or 1), the independence is trivial; so suppose f is not a
constant function. By simple properties of threshold functions, we now know that we
can, without loss of generality, assume that f (0) = 0 and f(1) =1, where

0= (0, 0, ... , 0)
1 = (I, 1, ... , 1)

Thus

Pr(x=1" If(x)=0) = o,

so that If the independence assumptions hold,

m(f )

0 M

But one of the factors must be zero, so for that i,

m (f -- 2n - = 2n - [ m (i) + m (f-) J -4

1 1 (1)
2n n-m(f ) 2 2 -.

xi

On the other hand

Pr(x = 0 I f() = 1) = 0.

So, by the independence assumption

m(f)
o = l (1-Pi)=]Hi(1 m~) j

Again some factor, say the j .must be zero:

mr(f) = m(f ) (2)

2
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But now, from Eqs. (1) and (2),

n-1 n-I
2 1  m(f) = m(fj) - 2I

so that all the terms are equal. Thus for some j, fxj must be the constant 1. Also,
since m(f- ) =m(f) - m(f = 0, f- must be the constant 0. Thus f(x) = xi

(END OF PROOF.)

I Thus we have shown that for any interesting threshold function, with equiprobable
input combinations, the independence assumptions in fact do not hold. The theorem can
probably be extended to more general input distributions, - possibly to arbitrary distri-
butions. This substantiates S. Amarell s conjecture, and suggests that the Bayesian
approach can be improved. In the next section we consider a different viewpoint.I
B. GEOMETRIC SYNTHESIS

I A standard switching-theoretic geometric Interpretation of threshold functions is
as follows: The inputs take on values + 1, the input n-tuples Z are mapped correspond-
ingly onto the 2 n corners of a 2 x 2 x ... x 2 cube centered on the origin of a Euclidean
n-space. Fora given f, those corners (or vertices) for which f (Q) = 1, are called 1-
vertices; if f(Q) =0, the vertex is a 0-vertex. An (n + 1)-tuple ao, all .... a of real

I numbers is a realization of f when the hyperplane n

a +a x +... +a x =0I o iinn

separates the cube so that 0-vertices lie on one side, 1-vertices on the other; when such
a hyperplane exists, f is a threshold function. (Note: We still use 0 and 1 for outputs.)

In order that we can treat the threshold in the same manner as other weights, and
so that the hyperplane will pass symmetrically through the origin, we add a new dimen-
sion and variable xo; when x0 = + 1 we define the new function to agree with our original
function; when x0 = -1, we define the new function to agree with the dual of the original.

(This is the self-dualization idea of [ Goto-Takahasi]. )

Now: An appropriate normal form for the equation of such a hyperplane is

x Cos o + x I cosa I + X2 Cos a 2 + ... + x Cos a = 0,

oa 1 1 2 2 n n

where the ci are direction angles between a normal to the plane and the corresponding
coordinate axes. We will relate direction angles to area on an n-sphere, and then area
on the n-sphere to the m (fx i ), by straightforward geometric arguments, described and
sketched in Fig. 1.
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xx

Fig. 1 Sketch of n-sphere I
I

Suppose we pass an origin-centered (n + l)-sphere of radius /(Tijl through the
2 n + 1vertices of the "cube" which we have defined in E n+l . For concreteness, let
us consider now a particular coordinate (say x) which we consider "up". (We should
speak of an x i ; "i" is dropped for convenience. We want to find a = cos a for this
x. ) All the other axes define a hyperplane, which we call "horizontal". If we pass
hyperplanes parallel to this one, at a distance 1 "above" and 1 "below", we have isolated
the regions where x = +1 and x = -1, respectively; this is where f x and f x are
represented. We will consider only f x below; by our construction, fx- is just its dual.
Within the n-dimensional region containing fx, the original (n+ 1)-sphere defines an
n-sphere by intersection. Furthermore, let us imagine our separating hyperplane passed
through the figure; it will divide the n-sphere into two parts (corresponding to O-vertices
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I
and 1-vertices). Now, since the 2 n vertices are spread evenly over the surface of the
n-sphere, the ratio m (fx)/m(fx) is an estimate of the ratio of areas cutoff by the sepa-
ratinghyperplane. For greater convenience, we define the ratio

I r (Area on 1-vertex side in upper n-sphere) -1/2 (Area of n-sphere)
1/2 (Area of n-sphere)

U m(f x) -2n-1

n-1

(r will have the same sign as the final weight; r = 0 when f is insensitive to x.)

I We assume that r is known by counting (or sampling) vertices; we see next that this
ratio determines the distance, D, which separates the separating hyperplane (as induced
in the upper n-sphere) from the origin (of the upper n-sphere). With a bit of trigonometry,
it can be seen that

2 w (-1 ) n-2 Gddr = - -_ _ dD

W (I) n - 1 fn_

(where w is the area of the unit n-sphere), so that
n

3 3-n

dD = n(1 - )
dr 2 _( - n

* Set

k _ _2wn-1

Initial conditions are that r 0 when D = 0 (and r = 1 when D = 'n).

I But if we know D (in terms of r), then we can determine the angle ( between the
separating hyperplane in (n+ 1)-space and the x-axis - we have a right triangle with
adjacent side 1, opposite side D. The direction angle a is the complement of (3
so that

a= cosa = sin = D slgn(D)

+V1 +D(.21 +1)1/2
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(We drop the "sign (D)". but in practice it is used, of course. to determine the sign!)
Solving for D:

2

D2  a 2
1-a

Now we can calculate 3
da da dD -3/2 D2 3-n
dr= dD = (D2+l) k( - D 2

n-

2 n/2 n+1 2 2k(l-a2) (1- n+._1 a 2

n

(after substituting and rearranging). Noting that a = r = 0 at D = 0, we calculate an 3
expansion for a around r = 0:

3 3 5 545 -

a =kr -k (2 + -) r + k (22 +- + 4) __..In n n2 120

The constant 2- I
-n-1

2 n-1 n-1 2 £-

2 2w 2

k - 2 as n - (Wallis' Theorem). I

If we take out the dummy x and divide all weights by k • 2 -n and set k 2 (2 + 3/n)/6 X.
we obtain o . a e

a. = [m(fx) -m(f-i) I -g o m (fx) - (f ) 3 4

and threshold 3
T' 2 n-1 m(f)] X [ 2 n - 1  m(f) 3+

This threshold is for a ± 1 system; using a standard rule, the threshold for a (0, 1)

system (as defined In the introduction) is then

T -- 1/2(T'+ a + a ... a). I
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Experience in the application of these rules has been very good: Often the first approxi-
mation, ai = m (f x ) -m (f i ) and T' 2 n - m (f). realizes given threshold func-
tions. For all functions tried (including a complicated ten-argument example), it was
easy to find a ) so that the second approximations worked; the values were very close to

the predicted X's. Randomized experiments on a computer are planned to cheek the
general worth of the second approximation, to determine the variation of X from function
to function for a given n, and to determine a good value of X as a function of n. (X= 0. 0008
was a good value for n = 7, X = 0. 00001 for n = 10.)

An important note: Chow [Chow-2] has shown, along with other theoretically very

interesting results, that the signs and relative magnitudes of the ai assigned by the first
approximation a, = m (f x i) - m (fx )are always correct.

C. CONPARISON AND C0IMKNT

Theorem: The Bayes approach produces a set of weights worse than does the first
geometric approximation, described above.

Proof: Assume that the weights should all be positive; if they are not, suitable com-
plementations make them so. It is clear from experience with the first approximation,
and follows from the fact that a better approximation subtracts a cubic term from the
first, that the first approximation gives exaggeratedly high first estimates to the larger
a i ; in other words, for a i > a., the ratio

m(f )-m(f- )
x x

I m (f )-m(f-)xi x

I is too high (for the best chance of realization). Let us abbreviate, putting m, m (f 
and m = m(f). Now we will show that the Bayesian weights

a i  log -i/m og I in
1 - m M- m i

are worse yet, because for mI > m

log m-re m 1 -(m-m 1 ) _m i -m/'2

log m -(m-m ) m -m/2
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I
which is already too large. We know that 0 !5 mj < m i -5 m, and we drop the equality

possibilities, where the Bayes weights blow up. Furthermore, because of the positivity
assumption (and [ Chow-2 ] , for example), m (f x j ) > m(fgj), i.e. m j > m -m j , so
m| j> m/2. Puttingy=.al andx = mj, we wantthentoprove: For 1/2 < x < y < 1,In m

l o g Y - -1-j > m-2. m I
1-Yi > y - 1/2
x x-1/2
x-x

Since log 1x- > 0 and x -1/2 > 0, we need only show that the function

g(x,y) = (x-1/2) log --- -1-y 1/2) log x
1-Y 1-x

is positive in the range R: 1/2 < x < y < 1. But I

a = (x-1/2). L " + (1--y)2 - log "-

=(x-1/2) -log x

y(1 -y). 1-x

andI

a 8g 1 1 _ (y-x) (y+x-1)
Ox iy y(l-y) x(1-x) y (1-y) x(1 -x) I

which is positive in R. Furthermore I

x= 1/2 I
(the left boundary of R), so that 21 is positive in R. (There are no discontinuities.)

But B

g(x,x) : 0

(the lower boundary of R), so that g is positive in R (again no discontinuities), as we I
wanted to show. Thus the ratio of larger weights to smaller weights is greater in the
Bayesian approach than in the first geometric approximation, where it is already too
high. (END OF PROOF.)

I
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I
We have shown that the Bayesian approach is poor for the synthesis of threshold

functions, assuming equiprobable inputs and complete specification. It should be clear
that neither of these are important in geometric synthesis, however: Probabilities of
inputs play no role, and the areas can be estimated from samples, when the function is
incompletely specified. (Use a weighting density function so that closely packed sample
points have their proper effect relative to sparsely packed ones.) Whether the Bayesian
approach is inferior to the geometric in the case of nonthreshold functions, has not
been investigated. (Here probabilities mean something - the problem is to minimize the
probability of error, say, when a threshold function is used as an approximation.)

As an example of these ideas, consider the function expressed by

I A [ B(C+D+E) +CD(E+F) +(C+D) EF] +BCD(E+F),

i which has (minimum integral) realization

7, 6, 4, 4, 3, 2, threshold 16.

The weights generated by the Bayesian approach are
9 1 o 7 15 15 4 13

ologg -log --log ,og 8 , log 1-

or (dividing through by . 08)

10.04, 6.66, 4.15, 4.15, 3.04, 2.00.

I With these weights, at best 62 out of the 64 vertices can be separated properly (thresh-
old 19.2). Note the characteristic manner in which higher weights are exaggerated, as

i compared with the minimal realization.

The first geometric approximation is

I 19-3, 17-5, 15-7, 15-7, 14-8, 13-9, threshold 32

i or (dividing by 2)

8, 6, 4, 4, 3, 2, threshold 16.

I This realization also fails on two vertices; if optimization by varying the threshold is
allowed, the same weights, with threshold 17, fails only on one vertex. Any (positive)
X up to 0. 004 will, in the second geometric approximation, give a realization of the
original function; the theoretically calculated value of 0. 0034 works fine.

I
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A final comment: The iterative synthesis of Mattson* apparently begins with our
first geometric approximation as initial trial (although no rigorous basis is suggested).
Mattson's idea is to optimize on one weight (or the threshold) at a time. As with the
Bayesian approach, however, threshold functions will usually not be realized. J.
Sklanaky of RCA Laboratories raised this issue by constructing a "pathological" plane
which almost realizes A (B + C), but which cannot be transformed to realization by
changing any one coefficient. The example discussed above was subsequently chosen
to illustrate that even with a very good initial try (in fact, the try which I believe Matt- I
son intended), namely

8, 6, 4, 4, 3, 2, threshold 6 1
(in the + 1 system), which misses only the 1-vertex j

.BCDEF: -8+6+4+4-3+2 = 5 < 6,

Mattson's iteration won't converge: f a change in some weight is to improve the reali- I
zation, it will clearly have to be a decrease in the weight a of A, an increase in b or c
or d, a decrease in e, an increase in f, or a decrease in T. But a decrease in a loses
the 1-vertices ABCDEF, ABCDEF, and ABCDEF at the same time it gains ABCDEF -
this is no progress. Similarly increasing b loses I-vertex ABCDEF and ABCDEF and
"gains" 0-vertex ABCDEF; increasing c loses ABCDEF and "gains" ABCDEF; d sym-

metrically; decreasing e loses ABCDEF, ABCI)EF, and ABCDEF; increasing f loses
ABCDEF and "gains" ABCDEF; decreasing T "gains" ABCDEF and ABCDEF. Thus a
combination of changes will be needed to effect a realization by iteration; the "hill"
being climbed requires a more subtle approach. This is strong reason for considering
more direct methods, as is outlined above.

The main conclusion of this section is: If we decide in a recognition problem to 1
try to use a threshold decision function, then switching theoretic methods for synthesiz-
ing the function are preferable to the conventional Bayesian approach.

I
i
I
I

• R. L. Mattson, " A Self-Organizing Binary System," PROC EJCC, pp. 212-217,

December 1959.
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i
D. CALCULATION OF MEASURES

i The calculation of the quantities m (f), m (f x i) from an algebraic representation of

f can be made very easily, providing f is 2-monotonic, as follows:

1. Put the representation into canonical form (page 67 of thesis [ W-4] ); call
this form P. (We will assume P is positive, but nearly the same procedures
apply in the general case.)

2. Write the numbers 2 n -i (decimal form) under the variables x i , in each
appearance as the last factor of a term of P. Then m (f) is simply the sum
of these numbers.

I Example: (x I is A, etc.)

A[B(C+D+EF) + C(D(E +F) +EF)] +BCDE

8 4 1 2 1 1 2

m(f) = 8+4+1+2+1+1+2=19.

Proof: In general,

m(f) = m(f ) + m(f-)
x x

I for any argument x. But f is 2-monotonic by assumption, and P, being in canonical
form, is

I P = x1 Q+R

where Q and R don't involve x I . Thus

m(f) = m(g + h) + m(h)

where g is represented by Q, h by R. But by theorem 18 (page 67) of thesis [ W-4],
I R -. Q, sothath-.g; i.e., g+h= g. Then

m(f) = m(g) + m(h).

This simple rule of decomposition, applied recursively, gives the rule stated above.

(END OF PROOF)
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3. To compute the m (fx j) . below each nulnerical entry of the previous step,
except t.c l's. write one half of that entry.

4. Compute m(fli) as follows: Moving from the left and starting on the bottom
row, add up entries until an xi is encountered- then skip over whatever the
x i might multiply into. and move up to the upper row. adding entries until
an x j with j _5 i is encountered. Then move back down again, and continue
as before. The sum will be m (f3 i ): then m (fx i ) = m (f) - m (f j i). (It's I
easy to generate a slightly more complicated rule to calculate m (fxi )
directly; this can be used as a check.) i

Example:

A[B(C+D+EF) + C(D(E +F) +EF)] +BCDE i
8 4 1 2 1 1 2
4 2 1 1

A: - 2. 19 - 2 = 17.

B: 4. 19-4=15. 1
C: 5. 19-5=14. I

D: 6. 19-6=1. 1

E: ....... L i ............... 7. 19 - 7 = 12.1

I
I

I

38

I



I
VII. REFERENCES!

Only English-language papers commercially available are listed below.
Almost all papers on threshold logic not covered by them are Lockheed (Missiles
and Space Division) Technical Notes and Reports, authored by D. T. Perkins,
D. G. Willis, E. A. Whitmore, and Sze-Tsen Hu. Also, at a Lockheed Symposium
n February 1962, Willis gave a paper "/ininum Weights for Threshold Switches",
nd E. Goto a paper "Threshold, Majority and Bilateral Switching Devices" --

the latter seems to be subsumed by [Goto-Takahasil]. Papers in Italian, Japanese,
and Russian do not appear to contain material not covered by the references3 below.

The "[R62-333," etc., give the :umber of a review of the cited paper, in
the IRE Transactions on Electronic Computers. "SCTLD" are the Proceedings
of the Annual Symposia on Switching Circuit Theory and Logical Design; the
1960 and 1961 proceedings are Publication S-134 of the AIEE, the 1962 pro-
ceedings are Publication S-141.

S. B. Akers [11 "Threshold Logic and Two-Person, Zero-Sum Games, "SCTLD (1961)
pp. 27-33, September 1961.

[2] "On the Algebraic Manipulation of Majority Logic," IRE Trans-
actions on Electronic Computers, Vol. EC-IO, No. 4, p. 779,
December 1961.

[3] "Synthesis of Combinational Logic Using Three-Input Majority
Gates" SCTLD (1962), pp. 149-157, September 1962.

3 S. H. Cameron, "An Estimate of the Complexity Requisite in a Universal Decision
Network," Bionics Symposium, WADD Report 60-600, pp. 197-212,
December 1960.

C. K. Chow, [1] "Boolean Functions Realizable with Single Threshold Devices,"
Proc. IRE, Vol. 39, pp. 370-371, January 1961. [R62-951

[2] "On the Characterization of Threshold Functions," SCTLD (1961)

pp. 34-38, September 1961. [R62-331.

C. L. Coates, R. B. Kirchner, P. M. Lewis II, "A Simplified Procedure for the
Realization of Linearly Separable Switching Functions", IRE Trans-
actions on Electronic Computers, Vol. EC-11, pp. 447-458, August 1962.

C. L. Coates and P. M. Lewis II, "Linearly Separable Switching Functions,"
Journal of the Franklin Institute, Vol. 272, pp. 360-410, November 1961

[R62-120]

M. Cohn and R. Lindaman, "Axiomatic Majority-Decision Logic," IRE Transactions
on Electronic Computers, Vol. EC-lO, pp. 17-21, March 1961. (See
also correspondence in IRETEC of September 1961, pg. 530.) [R61-85]

L. Dadda, [1) "Synthesis of Threshold Logic Combinatorial Networks," Alta
Frequenza, n.3, Vol. XXX, pp. 224-28E-35E-231, 1961. [R61-86]

[2] "Synthesis of Threshold Switching Networks by Map Methods,"
(Abstract) Proceedings of the IFIP Congress 62, to be published by
North Holland. Conference: Munich, August 1962.

S. N. Einhorn, "The Use of the Simplex Algorithm in the Mechanization of Boolean
Switching Functions by Means of Magnetic Cores," IRE Transactions on
Electronic Computers, Vol. EC-IO, No. 4, pp. 615-622, December 1961.
(See also correspondence in IRETEC of August 1962, pg. 573).

1 39

I



C. C. Elgot, "Truth Functions Realizable by Single Threshold Organs," SCTLD
(1960), pp. 225-245, September 1961, and AIEE Conference Paper 60-1311,
October 1960, revised November 1960.

C. C. Elgot, S. Muroga, "Two Open Problems on Threshold Logic," SCTLD (1961),
pg. 166, September 1961. i

P. Ercoli, L. Mercurio, "Threshold Logic with one or more than one Threshold,"
Proceedings of the IFIP Congress 62, to be published by North Holland.
Conference: Munich, August 1962. !

I. J. Gabelman, [1] "The Functional Behavior of Majority (Threshold) Elements",
Doctoral Dissertation for Syracuse University, Electrical Engineering
Department. Available through University Micrcfilms. June 1961. I

[2) "A Note on the Realization of Boolean Functions Using a
Single Threshold Element," Proc IRE, Vol. 50, No. 2, pp. 225-226,
February 1962. [R62-95] I

[3] "The Synthesis of Boolean Functions Using a Single
Threshold Element", IRE Tranactions on Electronic Computers, Vol EC-11,
No. 5, pp. 639-642, October 1962. 1

E. Goto, H. Takahasi, "Some Theorems Useful in Threshold Logic for Enumerating
Boolean Functions," Proceedings of the IFIP Congress 62, to be published
by North Holland. Conference: Munich, August 1962.

W. H. Highleyman, "A Note on Linear Separation," IRE Transactions on Electronic
Computers, Vol. EC-IO, No. 4, pp. 777-778, December 1961. CR62-95]

G. Hotz, "Digital Filters of Threshold Elements," Proceedings of the IFI1 Congress I
62, to be published by North Holland. Conference: Munich, August 1962.

W. H. Kautz, "The Realization of Symetric Switching Functions with Linear-
Input Logical Elements," IRE Transactions on Electronic Computers,
Vol. EC-10, No. 3, pp. 371-378, September 1961 [R62-2]

P. M. Lewis II, C. L. Coates, "A Realization Procedure for Threshold Gate
Networks," SCTLD (1962), pp. 159-168, September 1962. I

R. Lindaman, [1) "A New Concept in Computing," Proc. IRE, Vol. 48, p. 257,
February 1960. 1

[2] "A Theorem for Deriving Majority-Logic Networks within an
Augmented Boolean Algebra," IRE Transactions on Electronic Computers,
Vol. EC-9, pp. 338-342, September 1960.

R. McNaughton, "Inate Truth Functions," IRE Transactions on Electronic Computers,
Vol. EC-10, pp. 1-6, March 1961, and previously available as Technical
Report No. 4, Applied Mathematics and Statistics Laboratory, Stanford
University, October 1957. [R61-851 I

S. Muroga, [11 "Logical Elements on Majority Decision Principle and Com-
plexity of Their Circuits", Proceedings of the International Conference
on Information Processing (June 1959), Columbia Univ. Press 1960.

S. Muroga, I. Toda, and S. Takasu, [2] "Theory of Majority Decision Elements,"
Journal of the Franklin Institute, Vol. 271, pp. 376-418, May 1961.
[R62-119]

[31 "Functional Forms of Majority Functions and a Necessary
and Sufficient Condition for their Realizability," SCTLD (1961),
pp. 39-46, September 1961. [R62-35]

40 1
I



[4] "Restrictions in Synthesis of a Network with Majority
Elements," Proc. IRE, Vol. 49, p. 1455, September 1961.

[51 "Majority Logic and Problems of Probabilistic Behavior,"
Self Organizing Systems 1962, pp. 243-281, Spartan Books, 1962,
(Proceedings of Conference May 1962).

[6] "Generation of Self-Dual Threshold Functions and Lower
Bounds of the Number of Threshold Functions and a Maximum Weight,"
SCTLD (1962), pp. 169-184, September 1962.

S. Muroga, I. Toda, N. Kondo, [7] '"ajority Decision Functions of up to Six
Variables", to appear in the Journal of Math, of Comp., October 1962,
(Published in Japanese in 1959 and 1960).

H. S. Miiller and R. 0. Winder, '"ajority Logic Synthesis by Geometric Methods,"
IRE Transactions on Electronic Computers, Vol. EC-11, pp. 89-90,
February 1962. [Also, Scientific Report No. 4 on this Contract.]

R. C. Hinnick, "Linear-Input Logic," IRE Trnasactions on Electronic Computers,
Vol. EC-IO, pp. 6-16, March 1961; essential ideas delivered at the
sixth Annual Symposium on Computers and Data Processing of the Denver
Research Institute, July 1959. [R61-85]

J. Myhill and W. H. Kautz, "On the Size of Weights Required for Linear-Input
Switching Functions," IRE Transactions on Electronic Computers, Vol.
EC-IO, pp. 288-290, June 1961 [R62-96]

M. C. Paull and E. J. McCluskey, Jr., "Boolean Functions Realizable with Single
Threshold Devices," Proc. IRE, Vol. 48, pp. 1335-1337, July 1960.
[R62-95]

R. C. Singleton, "A Test for Linear Separability as Applied to Self-Organizing
Machines," Self Organizing Systems 1962, pp. 503-524, Spartan Books,
1962 (Proceedings of the Conference, May 1962).

0. B. Strin, [1] "Arbitrary Boolean Functions of N Variables Realizable in
Terms of Threshold Devices," Proc. IRE, Vol. 49, pp. 210-220, January 1961.
[R61-85] [R62-76]

[2] "The Profile Technique for the Design of Threshold Device
Logic," SCTLD (1961), pp. 47-54, [R62-76].

V. I. Varshavskii, [11 "Functional Possibilities and Synthesis of Threshold
Elements," Soviet Physics Doklady, Vol. 6, No. 8, pp. 678-680,
February 1962. [R62-95]

[2] "On the Complexity of Networks of Depth Two Formulated From
Threshold Elements," Soviet Physics Doklady, Vol. 6, No. 8, pp. 683-685,
February 1962. [R62-951

R. 0. Winder, (1] "Single Stage Threshold Logic," SCTLD (1960), pp. 321-332,
September 1961, and AIEE Conference Paper 60-1261, October 1960.*

[2] "More About Threshold Logic," SCTLD (1961), pp. 55-64,
September 1961 [R62-31] [Also, Scientific Report No. 1 on this
Contract. ]*

[3] "Some Recent Papers in Threshold Logic," Proc. IRE, Vol. 49,
p. 1100, June 1961

I *This material is incorporated in Special Scientific Report No. 1, on this
Contract, or into the present Special Scientific Report.

1 41

I



I
[41 "Threshold Logic," Doctoral Dissertation for the Mathematics

Department of Princeton University. (This paper incorporates the
material of [Winder-li and [Winder-21.) Available through University
Microfilms or directly from the author. May 1962.*

[51 "Networks of Threshold Gates," (abstract) Proceedinas of
the IFIP Congress 62, to be published by North Holland. Conference:
Munich, August 1962.*

[61 "Threshold Logic in Artificial Intelligence", Artificial
Intelligence (Papers from the AIEE Winter General Meeting, 1962),
IEEE Publication S-142, January 1963. [Also Scientific Report No. 6
on this Contract. ]*

I
I
I
I
I
I
1
I
I
I

This material is incorporated in Special Scientific Report No. 1, on this
Contract, or into the present Special Scientific Report.

42

U



I VIII. APPENDIX

by R. 0. Winder

I The 83 SD symetry types for four arguments, with Chow parameters

and realizations by 3-input majority gates (optimal number of levels)

(80000 Z1 7 -7(9) 53111

A U -I F UA(CDE)
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I
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I AB(ACD) (ADE) (AdE)
lefP7lef r[ (CH) (AM) XEZ) ]

(4) 62200 (12) 51111

[ (AB2I) (ABJ5)B ]I

(5) 62000 (13) 44400

(ASD U)ABC

(6) 60000 (14) 44222

[ (A) M)) AB(CDE)

I
(7) 53311 (5 42
i A (AC) (IN) A(BDE) (BC1)

(8) 53111 (16) 4420

* (ACD) (Aft) 411 11= 411~ (16)4420

I Dc)(AB)C) (dE)

II 43

I



(1) 40Q -71 (25)1 42200
(F(Act) (ABD)A (,CD) (DCD) L [ (fE) (EADE) (ACE)] I

(18) 44000 47(4T26) 42200

A(ACD) (A)

(ABC) (Aid) (BDE) 2A7 [:) (ABE) (WB)(E) 1

(20) 42222 (CD) (28)42000

(20) 42222 =tLI (ABE) (CDE)

(ACE) (AB?)(AID) I 
L DEABC)ABD)I

(29) c0(0Q

(21) 42220 (ACD)(ABC)(ABD)

(ABC) (CD) - - I
(AB() (3D) (40)

(22) 42220 (30) 40000

(ACE) (BCI) FT:Al (ABC) (ABC)
[(CE) (BCE) l
E(A D) (BDR) aIJ7(b) 

AE

(ACE) (ABC)(BDF)(DE)

(ACE) (24 I ) 42(3) 33333

(ACD) (BC51 (32)

[(ACD) (eDE) (ABE)] i(BCD) (ABD)E]

I

I



: (33) 33331 .e 41) 33111

i(AiM) (CMZ) j ~~(CD;E9)E - - -i

[( DE)(AE)]

(34) 3331 
(42) 3311143)?3311 4'71 4Bik

(AUCI liii, III [(BD)(A)]I

I (35) 33311 (43) 331111

CD) (AEA I;)] 1) I- El(AD)A~A

(AD AE)(D) LZJ7 [{~ 1/1 (~E(ABC) I

(37) 33111 ,1:I(45) 31111
ttl'I (ABC) (A6E)

(C)(ABE) FM-T- [ (AD) (kBE)C]

I (38) 33111 (46) 31111

A(ABC) - T -~ (CDE) (AbE)

I (BDR(CD) (Afi))(((CDE(f) (KE) (BCD)]1

(ABC) (A41)) , FII JBIl
(QZ(CDR)E (AdD)

(40) 33111 2' j (48) 31111

* (ACf)(BD) J....4 Ji... [J.JJ (A(ACD)(AE)]

(BD*5 = [(5)B5B

I4



I

(57) 22220 I
[(9) 3111 [(AD) (CDE) (1a)]
[(Aix) (A Z)D] 

[(ADl)A(ABC)]

(jABC) (AD)K (ABC) D

(50) 31111 (58) 22220

[(ADE) (ABC) (X:C) ) 
[ (ABC) (BCD).(A

S( ) ( )](ABC) (ABD)E

[(CDE)(AZE)A]

(51) 31111 (59) 22200 I
[[ (C(A)B(C)(AJD)] , (AE) (DE) (A)

[A(AM) B(Ad)I [(ABC)f(AB ) (AD)

(CDE) (ABE) (BDE) ] 
[A (AME) (ABC) ]

[[ (BCi) (AABD) (AE)

(53) 22222 
( 22200

E(CD) (CDE)A] ( 7 f[A (AA)M(A))]

[(AC) ')[() 
(aBC) (A) ]

(54) 22222 
[ (AbD)(ACE)(2220

T =vi F = [I (AB(CE) I(AC) I)L (A) !

(AC) (Aic) (A BDE) (BDE)
(in) (Be)I

(56) 22220 (64) 22200

(A5) 2 (ACD) (ABC)E]
(AM) [CI) L B(BCD) ABE) I
[(BCD) (C[D) ( M) (AiB) (AB ) I

I

I



I
(65) 22000 ~ ~ j~/77 ~ !(3 11

I [(ABC) (AID) (Af)] ]lM [1711 (ABC)%
[(Bft)(biUC (I)L~'[BC) (BCD) (KBE)]I
[U(,IID)]I

(66) 22000 
(4 11

[(ABC) (CDC) (AC)] 
[(ABC) (ABD) (ABE) I

[ [JCDN) (AZI) (A) I[ (XAC) (Ab) (ABE)I

(ADI) 
[%(ICD)E]

(67) 22000 74 I 4~ r(75) 111Ill
(#11q) (ADZ) (AD)] [ (ACE) (DE) (.)]

* [A3) (BCK)D] [(CD))(AN)(AB) I

(3) K Y 
(C E)

(68) 22000 f' (76) 11111

(ACD) (ABC) (Aft) IT1 F [ (113D) (ME) (1C) ]
i (A) (ABC) (AN) I [(AID) (ACD)A ]E)I(AB) (:)

(69) 22000 (77) 11111

i [AAC)(ASD) 11-1 [A(ABC) (APE)
('Ue)] (A (Ad) (AMb)]

[ (M) (AM) (CD)] (A(ABE) (i) ]

(70) 20000 (78) It1111

((ABD) (ABC) (ACE)] ( MC(XBC) (BCE)D]I
[ ( a) (af) (li) ] I(am) (c5) (ca)]

i ! (AID)

(71) 20000 (79) 111Ill
iii' T= (Ai[ (CDE) (ABE) (ED!)])

[A(bc) (ACD)] I [.AB[ (CDE) (d&)E ])

I [Jc(I S) 
(10 Ox

(72) 20000 (Z]7) (AB) 00000

(Xa) ( i))

I 47I



(81) 00000e7

(ABC) (ABE)D] -UF3

(82) 00000 Z 7

I(M AD (ABC)]I

(83) 00000

where
x (ABC)(1§C)L'

FIII -M MI T-EI

obtain A Z b uaiy.7

FTILIFTIL FTI
JeLJ7JeL;7 L 7

Coordintes: (nly A 0is sho nnIst

obtinA byduliy.

BT7 IE
/- FIE

48I



I
I
I
I
I
I
I
I PART 2

RELIABILITY OF SWITCHING NETWORKS

I
I
I
I
I
I
I
I
I
I



I
I
3 I. INTRODUCTION

5 This part of Special Scientific Report No. 2 also consists of a

series of sections; Section II constitutes a survey of the application

of redundancy techniques in switching systems for the improvement of

reliability, Section III discusses several extensions of earlier work

on a specific scheme (reported in Special Scientific Report No. 1) --

the recursive triangles, and Section IV introduces a new line of explo-

ration: reliability in systems with memory and feedback.

I Section II is an outgrowth of the Symposium on Redundancy Tech-

niques for Computing Systems which took place in Washington last year.

It is intended to survey the field with the dual purpose of seeing

what is being done outside of our work at RCA Laboratories to apply

5 redundancy to increase reliability and evaluating our recursive

triangle scheme in the light of what we have observed. We discuss

those methods which are most relevant to the problems that we ourselves

are considering. (In particular, we discuss the papers presented

at the Symposium).

Although many techniques have been suggested for introducing

3 redundancy into computing systems, only those hiich require very small

additional quantities of equipment have gotten beyond the paper design

3 stage. Increased computational capability is a very easy concept to

grasp, but the concept of increased reliability is not well understood.

In fact,the former is regarded as a goal of the system while the latter

is often thought of as an obstacle to be overcome. Consequentlythe

two have been separated and people have found it easy to Justify large

additional expense for the former and far more difficult to justify it

for the latter. The two are not at all independent but until many more

5 people appreciate the relation between them, the systems proposed to

achieve reliability through redundancy will be slow to be adopted. A

5 purpose of Section II is to describe various techniques for redundancy

as well as to illustrate where each technique is most applicable.
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Section III collects and presents the results of a set of brief

explorations of the properties of recursive triangular networks. It

is divided into three distinctly disjoint subsections. The first

establishes that in the case of the three-input rectifier "and" gate

(which we studied in detail in Special Scientific Report No. 1)

triangular recursion can be used to improve the reliability of the

gate no matter how unreliable the rectifiers are. The second sub- -
section deals with attempts to make use of the recursive triangle to

improve the reliability of a nonsymmetric Boolean function (ABvCD). I
Both rectifier and threshold realizations are iivestigated. This

investigation indicates that the most promising level at which to j
apply recursive triangulation is the basic "and" gate, "or" gate level;

where improvements of reliability can be obtained as discussed in

Special Scientific Report No. 1. Finally, subsection three deals with

attempts to utilize the technique to improve the reliability of the I"nor" function. Improvements in reliability were obtained, similar to

those reported in Special Scientific Report No. 1. Maximum improvements

are obtained with three "nor" gates feeding an "and" gate. However,

when the probability of complete failure of the "nor" gate becomes large,

a majority gate or "or" gate will give better improvements.

In Section IV, the feasibility of introducing self-repairing

capability to a logical net is discussed. In complex logical systems I
having millions of component units, as also in Satellite systems, it will

be very desirable to have a logical organization capable of 'self-repair'. I
Also, one would like to have a net take prewvntive measures to avoid any

failure that may be anticipated. I

A logical scheme for organizing logical nets having the above

capabilities has been briefly studied. In this scheme a logical net will I
be provided with the facility to repeat a calculation with an alternate

net (subnet) whenever an error is detected. Substitution of a net (sub- 1
net) may also take place at the anticipation of an error occurrence. In

such a scheme, greater reliability of operation of a net would be achieved I
at the cost of increased computational delay. As recalculation will occur
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I only at the incidence of an error, the net will be making optimum use of

the computational time. Also, as the network deteriorates due to, say,

aging, its 'reliability' will not decrease, - instead it will take more

time to do a computation.

3 If it is required that each computation done by the net should take

only the shortest necessary delay, then one finds that this substitution

scheme offers the only possible way of introducing self-repairing capabi-

lity to the logical nets. In the context of this scheme the problems that

I arise in the organization of such nets are pointed out. Also, some examples

of such nets are discussed to illustrate the techniques of analysis.

I
I
I
I
I
I
I
I
I
I
I
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II. REDUNDANCY TECHNIQUES FOR SWITCHING NETWORKS

by S. Y. Levy

This report is an outgrowth of the Symposium on Redundancy Techniques I
for Computing Systems which took place in Washington last year. It is

intended to survey the field with the dual purpose of seeing what is being I
done outside of our work at RCA Laboratories to apply redundancy to increase

reliability and evaluating our recursive triangle scheme in the light of

what we have observed. We discuss those methods which are most relevant to

the problems that we ourselves are considering. (In particular, we discuss

the papers presented at the Symposium). I
In the case of devices built of few components or at least easily

accessible components, it has almost always been the policy of manufacturers U
to increase reliability by either derating components or using more reliable

ones. By and large, improvements in reliability have come about through

improvement in the reliability of the components used, as shown by most

people's experience with their home radios, for example. But increased

reliability of components has led to attempts to build still larger more

complex systems which need the increased component reliability merely to

maintain the old levels of system reliability (you might recognize this as

a sort of "Parkinson's law" of technology which says that advances in techno-

logy result in an expansion of applications which require the new technology). g

In addition, many applications of electronics are such that the cost of error

(or failure) is high enough to warrant large additional expenditure to prevent 3
it. Applications have arisen for equipment in hostile environment (e.g.,

radiation belts, war, etc.) where it is desirable to maintain operation in i

spite of the certainty that parts of the device will fail - or the device

will be expected to operate in an environment where repair or replacement of

parts is impossible (e.g., an unmanned satellite). At the other extreme I
there is the new batch-fabricated technology where large quantities of rela-

tively inexpensive devices are made simultaneously and interconnected in a

functioning array but with component yields far less than that acceptable

from individually produced devices. Can redundancy be applied to this techno-

logy to make use of these less-than-perfect arrays of components? At any

rate, it is abundantly clear that there is need for suitable techniques for

the efficient application of redundancy.
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I
The Reliability of Coherent Systems by Esary and Proschan (Boeing

Aircraft) is a general discussion of the analysis of the behavior of contact

type networks (e.g., relay networks, unipolar transistor networks). An n-con-

tact network is described by an n-component vector -- each component being an

indicator of the state of the corresponding network component (xi - I indicates

the i th component is operating properly, x, a 0 indicates the component is not

operating properly). An overall structure function 4(X) is defined (where

x V x 2  x a ) such that (f) - I if the overall network is functioning

properly, I() = 0 if the network has failed. The property coherence is

I defined by three conditions

1) (1) - I where 1 - 1, 1, ... , 1

2) f(b) - 0 where 0 - 0, 0, ... , 0

3) For all i(xi ay)-§(W 1(y)

The paper deals only with coherent nets and their behavior under a form of

iteration which involves replacing each contact by a replica of the entire

network. To investigate the behavior under this type of recursion they define

h(p) as the probability of the network operating properly as a function of p, the

J reliability of an individual component. h(p) is a so-called "S-shaped" curve.

[ _h(p) -P

-rYPICAL h(p) S-SHAPED

1 0 p

P

If each component is associated with a p such that h(p) > p, then the

iteration results in a staircase effect leading to arbitrarily high

I reliability (for example, in the diagram h(p*) > p*; h(h(p*)) > h(p*) etc.)

If h(p) < p the staircase leads to 0 reliability in much the same way. How-

ever, the authors fail to give a reasonable characterization of coherence in

terms of what sort of restriction it represents; in fact, they do not give a
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single example of a noncoherent network. Winder has pointed out a simple I
example of a noncoherent structure which we include here.

1 2
X y

+ a f(x,y)

x y
3 4

f (x, y) - XF

Suppose relay 4 is not functioning properly and is stuck closed

while relays 1, 2, 3, are operating correctly.

Then

f(x,y) =xj v x-x , I

so
so 1}(1,1,1,0) = 01

Suppose relay 4 is stuck closed and relay 3 is stuck open, while relays

I and 2 are operating correctly.

Then
f(x,y) - xf , I

so

1(1,1,0,0) - 1 1
f(I,1,0,0) >1(1,1,1,0) and the network is not coherent.

~I

Note that the structure function I (X) is a function from binary inputs to a

binary output and so may be regarded as a switching function. We can suggest

the following characterization of a coherent network.

Theorem: A network is coherent if and only if the switching function

(m) (not to be confused with f(l) the function computed by the network)

is positive in all xi and not identically 0 or 1.

Proof: 1) Assume the network is coherent. Then consider any X for

~I

which I(X) - I. Changing any x i from 0 to I can never decrease
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I
because the network is coherent. Therefore I - and the

function (X) is positive in all xi.

3 2) Assume 1 (l) is positive, and not identically 0 or 1.

Then for all x 1--1 x, this means increasing xi can never decrease

(X). Since for at least one value of X, I ) - 1,then J(1) - 1; and

since for at least one value of X, §(X) - 0, (0) - O, the network is

coherent.

Corollary: Irredundant circuits are coherent. The structure

function, 1, of an irredundant circuit is the "and"

function(X) -x - x2 "-- xn .

If one considers the mode of failure as failure to operate (to remain

stuck in rest position) then all frontal circuits (where relays are normally

open) are coherent circuits because a failure can only open a path and make

it less likely that the network functions properly.

Though the authors' interest in reliability leads them to attempt an

iterative procedure where each element of the network is replaced by a replica

of the entire network, the type of circuit which they are studying yields to

an entirely different analysis than does the recursive triangle. In the
2

Moore-Shannon paper on redundant contact networks (which incidently devotes

a great deal of time to the study of these S-shaped curves) there is an

interesting contrast of the two technologies, the mechanical (relay or

contact type) and the electronic (rectifier or transistor type). In comparing

the Von Neumann3 redundancy scheme to their own,Moore-Shannon2 note that where

in an electronic system the logical combining ("and", "or", etc.) is subject

to error, in the contact system, this is obtained by merely making appropriate

connections. On the other hand, in a contact network, the introduction of

copies of an input is subject to error (by requiring additional contacts) and

i a variable is copied in an electronic network by merely making appropriate

connections.

t x -10 with x i M Ia |T | with x i n 0
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Tolerable Errors of Neurons for Infallible Sets by Blum, Ernesto and

Verbeek (HIT)4 is an interesting paper - it would have been better if they

included an algorithm for the design of such error-free networks (if indeed the

procedure is algorithmic) or at least a little more detail which would substan-

tiate and explain the claims made in the paper. The networks formed consist of

n + 1 neurons for an n-input function arranged as shown below:

I
Fig. 2 Three-input neural netI

It is somewhat similar to our triangular network except that these

nets are nonhomogenous. No hint is given at a physical model for the I
type of network they discuss but the error-correcting properties are quite

astounding. The nets themselves have been presented before and as such

represent nothing new. However,the authors make the interesting coment also

made by several others at the conference that the choice of a simple majority

element for the combining or output gate is a naive one to be made only in the

face of no knowledge about the reliability behavior of the components to be

combined (with the exception of a few special cases), and that knowledge about
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such factors as the nature of failures, and the bias (if any) of errors can

lead to a better choice.

m ,"Codes and Coding Circuitry for Automatic Error Correction Within

Digital Systems" by W. H. Kautz (SRI? is one of the better papers presented

3 at the Symposium. Before discussing it, we would like to inject some general

comaents about the idea of coding for error correction in digital computers.

I There are two distinct ideas represented here. One is the coding of infor-

mation to ensure accurate transmission or storage much the same as in

communication theory (and the problems are, in fact, the same). The other is

the encoding of information to ensure accuracy of computation or

logical operation. The former involves encoding of data in the hope that the

coded form will resist alteration of the information in the handling, but in

the latter the handling is expected to alter the information and the problems

are quite different. It is almost exclusively the former with which Kautz

deals. The latter problem is discussed in Gore's 6and Winograd-Cowan s papers

presented at the Symposium as well as in many papers not given at the Symposium

and will be analyzed in some detail later.

I The coding for reliable transmission and storage depends on certain

simple properties of the words. Basically,the idea is a simple one -- enough

3 redundant (check) bits are added to each word so that the Hamming distance

(i.e., the number of bits in which two words differ) between any two words is

3 2k + 1 where k is the largest number of errors which it is desirable to correct

for. Then a received word is decoded as the word closest to (least Hamming

distance from) the word received. In actual practice a systematic technique

for generating code words is used in order to facilitate the design of equip-

ment to perform the task, but the principle remains the same. The coding is

generally a form of "block" coding and is encoded and decoded by a set of

linear operations (i.e., described in terms of "exclusive or" and its comple-

3 ment). (If the words were to be logically manipulated certain additional

constraints would be imposed to ensure that the check resulting from a compu-

tation is also a proper check). Kautz is concerned with techniques for

physically realizing these codes as well as the quantity of equipment which

3 is actually needed. He points out there are several types of systematic
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codes available; the usual group codes, the low density codes which require

greater redundancy of information (more bits) but are easier to encode

and decode, Berger codes which detect completely biased errors (all

O's or all lts) and arithmetic codes suitable for checking the arithmetic

operations. These latter codes generally derive from number theoretic proper-

ties rather than from the logical properties which produce the other codes.
8.

(Peterson in a paper on checking an adder demonstrates that the only type of

checking possible where the adder and the checking circuitry are independent

is some form of remainder mod p check-].

Although it is possible to build multiple error-correcting circuitry,

the expense involved is usually so great that it is not done (with the

exception of special cases like completely biased errors or bursts of errors

in a set of adjacent locations). Kautz points out that "signal redundancy

suffers from certain basic limitations: For all but a definable minority I
of logical circuits, there exist some types of faults whose errors no amount

of signal redundancy can correct" (see discussion of noisy computation below).

He then goes on to say, "this theoretical limitation need not overly concern I
us, however, for three reasons. First, this minority includes several circuit

operations of considerable practical importance, such as simple data transfer, I
parity checking, and linear (pure "exclusive or") logical circuits

generally. Second we rarely need to protect a circuit against all possible

faults, but only a selected class deemed to be most likely. Third, recently

it has been shown that, under certain reasonable assumptions, a network

can be made arbitrarily reliable with the proper combination of signal and

circuit redundancies." [Unfortunately, we have not seen the proof of this

third statement].
9

.uad i d.ITog- by J. G. Tryon (Bell Labs.) presents a technique for

introducing redundancy into a logical chain. Essentiallyit involves quadrupli-

cating the number of gates and then systematically interconnecting them so as

to mask faults. It is Tryon's hope to mask these faults as close to their I
source as is possible. His approach is a qualitative one - he is not immediately

concerned with the question "how much does quadding improve reliability?" - I

* A remainder mod p check is performed by carrying as check bits the remainder

when the word is divided by p. It then follows that the sum of the checks of
two numbers is the check of the sum (similarly the difference, product, quotient

in a fashion).
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he asks instead - "If the output of this gate is stuck high, how can I

correct for it?" If there are two stages of logic beyond the faulty gate,

then quadding is an answer; if not, quadding is not an answer.

Quadding is applied to a chain (gating or timing) rather than to a

single logical element. A quadded chain has four times the number of gates

of a nonredundant chain, and each gate in the quadded chain has two times

the fan-in and two times the fan-out of a nonredundant gate. The termination

of a quadded chain is four lines, and the decision with regard to how to

interpret these lines in the case that they are not all in agreement is out-

side of the domain of quadding.

In his report Tryon presents an algorithm for quadding which we will ji
partially reproduce. Tryon describes the technique for the quadding of

combinational logic built of "and" gates, "or" gates, and "inverters" by I
three rules:

Rule 1. In circuits in which levels of "and" and "or" alternate,

wiring patterns must be chosen so that no signal encounters the same pattern

twice in succession as it goes along.

So, for example, in the diagram of the quadded circuit the connection I
pattern between the A and C gates is different from that between the C and E

gates. I
Rule 2. Whenever an "and" unit feeds an "and" unit (or an "or" unit),

all wiring patterns feeding the first unit must be the same as that between I
the first and second units. An example follows on the next page.

I

1
I
I
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I

The final rule includes the first two and is:3 Rule 3. As any signal flows from the input of any "And" or "Or" unit,
along any path, the parity of the number of changes in pairing that it encounters
must be equal to the parity of the sn of (a) the number of negations and (b)

the number of "and"/"or" transitions.

I Incidentallyjnegation is handled by applying De Morgan's laws to move
the negations to the inputs, quaddingand then moving the negations back (making
the appropriate changes.)

Thus to quad:

A C

V

I II

I
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we first change it to:

Then quad itI

A

vI

and return the negations.
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A 8 AB A8

I
I

i
I
i

We also present an example of a quadded circuit which should give the

flavor of the technique. Figure 3 is an example of a circuit in both non-

redundant and quadded forms. Consider the quadded version. If as shown all

the M inputs are Its and all the P inputs are 0's, then the output of gates

AI A4 should properly be 0's. Suppose A4 is malfunctioning in such a way

that its output is a I instead. Then at the next level of logic ("or" gates

CI - C4 ) this incorrect 1 spreads to 2 gates C1 and C3 (assuming B, - B4 have

output 0). But at the following level of "and" gates, the situation is

corrected and the output is the proper "0" on all 4 lines. It is fortunate

that the "or" gates C1 - C4 were not the final level in the chain. Suppose,

on the other hand, that all the M's and P's are I's and that the outputs of

the gates A1 - A4 are proper I's, but that the output of C4 is an incorrect

0 (while C1 C3 .put out l's); then the output of E, and E will be 0 while the

output of E2 and E3 will be 1. The required action is unclear!

I This demonstrates that quadding requires at least two levels beyond

the source of a single error in order to correct for it; - this implies

that quadding is more effective as the chain increases. This would, in most
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technologies, prove a serious drawback since a) a chain terminates at a

storage element (flip-flop, memory, etc.), and b) the usual tendency in design

of a system is to try to keep the chains as short as possible to avoid deteri-

oration of signal and increased propagation time.

Tryon has managed to avoid these problems since he quads memory, timing
devices and even flip-flops. (The latter through an interconnected "nor"

gate type construction of the flip-flops) I

I

1!

OUT

Fig. 4 Tryon flip-flop. It is composed of combinational elements

that may be quadded in the usual manner.

I

The fact is that quadding is distinctly oriented to a particular type of
equipment. (There is nothing wrong with this; in fact, we believe that theI

type of redundancy to be used should be designed to fit the particular
technology. We state it only because we believe that it should be noted). I
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I
Tryon goes further in the design of his technique than anybody else

whose work we have read. He has given serious thought to the problem of

maintenance of a redundant system. In a system which is designed to mask

faults, it is harder to detect faults. Consequently, it is more difficult

to locate failures, and so a redundant machine would be more likely to

accumulate them than would a nonredundant machine in which they are almost

immediately detected. As a result there is a crossover point in time where

3 if both a nonredundant and a redundant machine are still operating, the

redundant machine is more likely to fail. B. R. Saltzberg, a co-worker of

Tryon's, has devised a technique for isolating nonredundant segments of a

quadded network in order to check for failed parts. This technique (as an

interesting extra) demonstrates how redundant power supplies may be used to

protect the system against supply failures as well as logical failures.

Quadding as a technique is applicable to relatively good components.

In the face of reasonably high probability of multiple failure in a quad, it

is not effective. For the same reasons it is better suited to a situation

where regular maintenance will not allow multiple faults to accumulate. How-

ever, it does offer a method of introducing redundancy at a relatively reason-

able price (about eight times that of a nonredundant machine) and in a

substantially uniform way throughout the machine.

Adaptive Vote Takers Improve the Use of Redundancy by W. H. Pierce

(Westinghouse)I0 presents a variation on the majority logic scheme of Von

I Neumann. In this technique certain of the replicated organs are assumed to

be more likely to be incorrect than are others, and so less credibility is

attached to their decisions. In effect, a more consistently reliable record

is rewarded by a greater say in the final decision-making element, and as

failures occur the voting weights are continually adjusted.

This is the most complex system for introducing redundancy which we

have seen. Since one of the great appeals of a binary system is its relative

immunity to error, we find the introduction of the analog weight adjustment a

possible weakness. In addition we do not see the need for adjusting the weights

over a continuum since the threshold decision-making device will recognize only

a relatively small number of different functions of the inputs - perhaps

adjusting the weights discretely would help the reliability of this involved
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device. Also,the Pierce scheme is not intended to improve the computation

part of the system, but is directed only at the decision maker. It intro-

duces an additional large (unchecked) system which appears to be another

likely source of error. Although we find the idea interesting and the analysis

a really intricate piece of work, we also find it impossible to consider it

seriously as a technique for increasing reliability. 9
W. H. Mann (Westinghouse) in Restorative Processes for Redundant

Computing Systems
1 1 presents some very good solid thoughts on redundancy. The 5

first section of the paper discusses modes of placing restoring organs into a

system at desired intervals. He discusses the various effects of the distri-

bution of these organs on the system reliability. His discussion is really

really outstanding when he discusses common assumptions about components

and the way they fail and how these assumptions affect reliability analysis.

The most interesting of these comments follows: I

Assumptions and their effects

1). The effects of highly improbable failure modes are negligible.

The flaw is that a failure which is improbable at the circuit level

may be highly probable at the large system level. For example:

Basic nonredundant system

System size 1000 stages

Signal processor failure probability 0.0005

Nonredundant system failure probability 0.394

All failures capable of restoration - Redundant system I
Restoring circuit failure probability 0.001

Redundant stage failure probability 3.36 x 10- 8

System failure probability 3.36 x 10
5

Redundant system with additional 0.1 percent of failures not capable of

restoration j
Signal processor failure probability 0.0005005

Restoring checked failure probability 0.001001

System failure probability 750.5 x 10
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2). A false I is as likely as a false 0. This is the type of

assumption which would lead to a simple majority decision-making element.

fI, for example, oi.e considers a model like ours of the rectifier "and" gate

where the open diode acts as a 1, then the outputs of "and" gates are such

that all output O's are correct but some output I's are incorrect. If this

is the case an "and" gate is the best choice for a combining element. If

the probability of a false 0 becomes positive the choice of combining func-

tion should move away from "and" on the lattice of Boolean functions going

close to majority as the probability of 0 and 1 get closer to equal and

finally towards "or" as the probability of 0 gets larger than that of 1.

Information Theory and Redundancy

This section will cover work reported over a long period of time by

many people. In pre-information theory days, the standard procedure used to

transmit binary information through a noisy channel was to repeat the trans-

mitted signal 2n+ times. Then at the receiving end a majority vote would be

taken to determine the nature of the transmitted signal. If n + 1 or more

Is were received the signal would be interpreted as a 1, otherwise the signal

would be interpreted as a 0. This is a simple example of an n-error-correcting

code (since if there are n or fewer errors the signal would still be interpreted

correctly). This obviously gives an increase in reliability, but at a price

- a decrease in the rate of transmission of information. [To be n-error-

correcting causes a decrease in transmission rate to -"- times that of theI corectng a2n+1noncorrected case]. The probability of error for this particular system is

given by e - 2 kR where R is the rate of transmission of information. By

decreasing the rate (R), pe can be made to decrease, but to make pe arbitrarily

small it is necessary to make R arbitrarily small as well. Information theory

provided a different solution to the problem of increasing the reliability of

transmission of information. If one defines a quantity C (the channel capacity)

as a maximum rate at which it is possible to obtain mutual information from

the output of the channel about its input, then by a type of coding called

* block coding it becomes possible to transmit information through that channel

with a probability of error given by pe R where R is again the rate

of transmission. [From this relation we see that C is also the maximum rate

at which it is possible to receive information over the channel with arbitrarily

high reliability]. To block code, take the sequence of bits to be trans-

mitted, break it into units k bits long, and encode each k bit sequence into
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an n bit sequence (n > k); then transmit the n bit sequence. At the receiving

end, the n bit sequence distorted by noise is decoded into the proper k bit

sequence. If R, which equals k/n, is kept constant and less than C, then by

increasing both k and n the error probability may be made arbitrarily small.

But all the results we have presented thus far hold only for the case

that the information coming out of the decoder is intended to be the same

information which went into the encoder. But what of the case where the

information is not just being transmitted or stored, but is being logically

combined with other information (also appropriately coded); can block coding

provide a technique fcr obtaining arbitrary reliability in some more efficient I
manner than the iterative methods mentioned above? Von Netnann, in his paper

on probabilistic logics;'3 expressed the opinion that it could, but just how

eluded him. Elias12 noted that the techniques of replication and majority vote,

or iteration to improve reliability are much like the pre-information theory

techniques for reliable signal transmission. If, instead of building a

redundant computer operating at a higher reliability level, one chooses to use

the redundant elements to build extra computers operating at the old reliability I
levels, then one could perform more (though less reliable) computation. So in

a sense the result is a trade-off of computation rate for reliability. Elias

set about investigating this question, by considering information to be com-

bined according to any of the 16 binary functions of 2 binary inputs. In j
particular,he studied the "and" function (and then discussed its generali-

zation). Since maay of the later papers refer specifically to his results, we

shall reproduce his ingenious proci here.

K"AND"CIRCUITS

ENCOER ND AD A D ECODER

n -DIGIT DELAY i 1,' , I
K STAGES _J

[- -D,,TDELAY I

Fig. 5 Multiple "and" computer -
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I
The "and" circuit shown above takes the "and" of k successive n digit blocks

of coded input, using k-1 n digit delays and k-1 noisy "and" gates. We call

the input sequence consisting of k ones 1 k, and the sequence consisting of

k-j ones and j zeros 1kj o
j etc. The n bit block which is the coded version

of s will be denoted by T(s), so T(I k ) is the sequence which comes out of the

3 encoder when a sequence of k ones is put in. Consider the following set of

n-digit blocks which are possible results of this computation as they come

I out of the last "and" circuit before decoding:

T( k ) • TO
k ) ...... T(l) T(1 )

I T(k ) • T(1k ) ...... T(1). T(ik- 0I)

T(1k ) • T(1k ) ...... T(lk-101) T(li k-20I
I

k k-T1 k (1 k-i T(k
T(I ) 0 T(i10k ) ... T(I ) T(O)

I Each line can be obtained from the preceding line by "anding" with one new

factor, since the "and" of T(I k ) with itself any number of times is stillaT(Ik). But adding a new factor by "anding" can only strike out some of the

ones which are present in a sequence. All of the n digit sequences above

I must be decoded differently, since they all represent computations having

different results (the proper result for each row is the argument of the

5 rightmost factor). In going from one line to the next we eliminate at least

one one. If we let di be the number of ones eliminated when passing from line

I i to line i+W, then, since there are at most n ones in the first line and

at least no ones in the last line,we have

k

di<n; di > 1

i-i

I It follows that if n < 2k some of the di will be Just one and a single

error in the output can cause two adjacent lines to become confused, so that

3 the decoder will print out the wrong answer when such an error is made, if

it prints out the right answer when no errors are made.

I
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From this it is concluded that: I
1) It is not pcssible to get a reliability for the block greater than

that present in the individual devices (reliability here being probability of

correct output) until the rate of transmission drops from unity(k - n) to

(2k - n) and even then there are single errors which the decoder can detect

but only attempt to correct, with probability I of guessing wrong.

2) The rate must drop to (3k = n) before all single errors in the I
computations shown above can be corrected. Notice that n - 3k has a familiar

ring andin factif we must go to that much redundancy we could as well and I
certainly as easily (from the point of view of decoding and encoding) go to

simple iteration of the ith digit of each block. So at least as far as minimun

distance between words between codewords is concerned, no block code (for the

computer considered) does better than simple iteration of the input I
digits (and as mentioned earlier this leads to a capacity which is zero].

Elias considered all the possible binary functions of 2 inputs x and x2.*

Of these, he conjectured that the only nondegenerate functions to which coding

could be applied to achieve arbitrary reliability were "exclusive or" and
"equivalence". But "exclusive or" and "equivalence" and any combination of

the degenerate functions of 2 variables do not form a complete set of propo-

sitional functions. There are Boolean functions like "and", :'or" which can

not be constructed from these functions.and so in all likelihoodone could

not construct a complete general purpose computer from these block-coded

functions.
13

Peterson and Rabin prove the same results as Elias under somewhat more

relaxed restrictions, and in fact they are able to verify (algebraically)

Elias' conjecture. Their results are summarized here:

1) For single-error detection codes which consist of the original

information with a check symbol, there is no simpler system than making the

check symbols duplicates of the information for any nontrivial logical

operations except "exclusive or" and "equivalence" both L.f which may be

checked with "parity digits".
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I
2) For general block c.ding with the output decoding one - one in

the absence of errors, and the ceded blocks processed digit by digit, for

"and", "or", "exclusive-or", "equivalence" the same code must be used at

the output as at the inputs (assuming that in each case the sequence of all

zeros codes into the sequence of all zeros). For the other six nontrivial

logical operations the input and output codes are closely related. For all

logical operations except "exclusive or" and "equivalence", the operation

done on the coded blocks must be the same as the operation being checked.

For "exclusive or" and "equivalence", each digit in the coded blocks is a

parity check on some subset cf the digits of the uncoded block. In other

wordsgroup codes and only group codes can be used to check these two

I operations.

3) For the same restrictions on coding as on (2), and for all non-

trivial logical operations except "exclusive or" and "equivalence", there

is no simpler coding system with a specified ability to detect or correct

errors than a system in which the coded sequence consists of a number of

copies of the uncoded sequence.

Relying heavily on the previous results of Elias and Peterson-Rabin,

Winograd 14extended these results to the m variable case (m > 2). His results

are sunarized "Of all the 22m Boolean functions of m variables, only 2

I functions are linear [and hence may be block-coded to advantage]; namely,

all functions which can be represented as f(x1 , ... , xm) - kO + r kixi

for some ki M I or 0. Of those 2m + 1 functions only 2 are explicit functions

of all m variables, namely

n n
n ad where E and + stand

Z xi and i+ xi"" for "exclusive or"Ii-l i-I

Elias also pointed out that if we relax certain restrictions such

as insisting that the decoding at the output be one - one in the absence

3 of noise then we can do some of the computation in the error-free encoaer

and decoder and improve our reliability. To this technique Elias applied

the rather graphic name, "cheating".
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Again it may be said that this does not mean that only iteration

serves to check computer operations. If extra logical information is availa-

ble about the operation being performed, then an appropriate check may often

be designed, as, for examplea remainder modulo p check on an arithmetic unit.

In additionif one thinks in terms of applying the checks to code the function

as well as the inputs and in addition "owns up" to the possibility of error in --

the encoder and decoder then the coding may result in improved reliability

(though not arbitrarily high reliability).

Recursive Triangular Nets 5 ,16

The recursive triangular network has been described in previous reports. I
It is, like the Shannon-Moore2procedure an iterative technique for applying

redundancy and consequently the quantity of equipment used grows exponentially

with the number of stages of recursion. Very generally, the technique of I
triangular recursion is this:

A C

0" LEVEL GATE

I

7 N LEVEL GATEI

Fig. 6 Triangular recursion method
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A
Where the basic gate (whos. reliability is to be improved) is the 0 level

gate the I level gate is formed by a triangle of n (the number of inputs -

in Fig. 6 n = 3) 0 level gates feeding a 0 level gate; and in general,

an N + I level gate is formed by feeding n Nth level gates into an Nth level

gate. The manner in which a gate fails as well as the way in which it

operates are factors which determine whether or not triangular recursicn can

be used to improve the reliability of a gate. Our analysis of the reliability

of a gate derives from the idea that a failed gate computes a logical function

other than the one for which it is designed. This other logical function may

be a degenerate one insensitive to some of the input variables (or even all

3 the input variables as in the case of a gate stuck at I or 0), or it may just

be a different function of all of the variables. A set of recurrence relations

relate the probabilities of occurrence of each of these failure functions at

a stage of recursion to the value of these probabilities at the previous stage.

In earlier reports these relations have been produced and analyzed for various

probability distributions over failure and design functions. Under certain

restrictions on the distributions, it is possible to continue recurring until

j any arbitrary degree of reliability is achieved, but with most realistic

distributions, a maximum value of reliability is reached after just a few

stages of recursion, and if recursion is continued beyond the maximum, relia-

bility will drop off, eventually falling to zero. In the case of the simple

3 rectifier n-input "and" or "or" gate the probability of correct functional

operation goes from (1-p) n (where p is the probability of failure of a rectifier)

in the basic rectifier gate to very close to 1-p 
n in a few stages of recursion.

This would mean, for example, that for a 4-input gate with a probability of

rectifier failure of .01 that the probability of failure of a gate decreases

from 3.94 x 10-2 in the nonredundaut gate to 10-8 in the redundant gate or

by a factor of about 25000. Of course, the price paid for this would be very

high indeed - it would require 625 times the equipment in a nonredundant

gate. If an improvement factor of about 20000 would suffice, this could be

obtained at a cost of about 125 times the nonredundant equipment. These
quantities of equipment sound forbidding. They are (although Von Neumann

spoke of numbers on the order of 1000 to 25000 in his multiplexing technique).

Even if the economic considerations were not by themselves sufficient to bar

such a system, certainly considerations of power consumption and bulk would

exert a strong negative influence.
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However,considerable improvement in reliability is obtained at the

early stages of recursion where the amount of equipment required is not

nearly so large as in the examples cited above. The table below gives some

examples of improvement at the early stages of recursion.

Number N PN PO Equipment ratio
of Stage of P failure) at 0 redundant

Inputs p Recursion Nh Recursion PN nonredundant I
1) 3 0.2 0 .488 1 1

1 .112 4.4 4

2 .011 44 16

3 .009 54 64 I

2) 3 0.01 0 3 x 10 - 2  1 1 J
1 3 x 10 - 4  100 4

2 3 x 10-9  10,000,000 16

3) 4 0.3 0 .76 1 1

1 .2 3.8 5

2 .011 7 25

3 .009 8.4 125

l
Notice that case 2,which is the most striking of the 3 cases, represents

a gate made from components which are clearly worse than anything commercially

acceptable today - rectifiers which fail I out of every hundred times they

are called on - (and cases 1 and 3 are considerably worse than that). The

point made here is that the triangular recursive redundancy is applicable t I

really poor components - techniques like, for example, quadding are certainly

more reasonable to use in the case that the likelihood of multiple error is

small indeed, but in the case where the components are really 'had and the

occurrence of multiple error is not unlikely, then only the recursive triangle *
of all the techniques discussed is applicable.

7
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IIn surnary, the recursive triangle requires large amounts of redundancy,

but it is able to make extremely efficient use of the "extra" components. If

Iconstructed with components with a low error rate recursive triangular nets
might be used to build equipment with an extremely long lifetime (e.g., for use

in a space craft taking a long journey). On the other hand the recursive

triangle might be considered as applicable to a situation where a great number

3 of components can be produced cheaply (and perhaps not too reliably),but it

is still desired to construct a useful system from them.

I The present

The current'state of practice' of redundancy techniques as applied to

computing systems is yet far from anything discussed in this report. So far

as I can gather, people design conservatively and stock spare parts (usually

in the form of 'plug-in packages') on the one hand, and where the application

(and financial capability) warrant it, as, for example,in satellites or defense

systems like SAGE they introduce entire standby systems to be operated in

parallel or as they are required. Redundancy applied at levels lower than

duplication of the entire system is usually present in the form of extra

parity bits for detection of errors in information transfer and remainder-

modulo-some-p checks for detection of error in arithmetic computationwith

correction of the errors provided by repeating any operation shown to be in
i error.

Increased computation capability is a concept very easy to comprehend,

but the concept of increased reliability is not so well understood. In fact,

the former is regarded as a goal of the system while the latter represents

an obstacle (i.e., the enemy). Consequently the two have been separatedand

I people find it easy to justify large additional expense for the former but

far more difficult to justify it for the latter. Of coursepthese two are

not at all independent but until many more people come to think in terms of

the ways in which they are related, the systems which we have discussed in

3 this report will be slow to be adopted.

7
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The most ambitious that anyone has been getting at present (to the
best of our knowledge) is to attempt some of the techniques discussed in

Kautz'5 paper which do not require large additional quantities of equip-
ment. If faced with an appropriate technology (and-or-not-quite reliable)

then a technique similar to what Tryon 9 suggests could be the next step.
If on the other hand the technology calls for making use of very cheap but
unreliable components, then a very good case could be made for adopting

something like the recursive triangle. And between these two tecldliques, I
cases are to be made for many of the systems which have been discussed.

7
I
I
I
I
I
I
I
I
I
I
I
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III. SOME THOUGHTS ON RECURSIVE TRIANGULAR NETWORKS
by S. Y. Levy

This report presents the results of a set of brief investigations

of Lhe properties of recursive triangular networks. It is divided into

three distinctly disjoint sections. The first establishes that in the case

of the three-input rectifier "and" gate (which we studied in detail in

Special Scientific Report No. 1) triangular recursion can be used to improve

the reliability of the gate no matter how unreliable the rectifiers are.

The second section deals with attempts to make use of the recursive triangle

to improve the reliability of a nonsyumetric Boolean function (ABvCD). Both

rectifier and threshold realizations are investigated. Finally, section

tbree deals with attempts to utilize the technique to improve the reliability

of a complete function "nor".

II
I
I
I
I
I
I
I
I
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PART I THE 3 INTUT RECTIFIER GATE

In the three input rectifier gate the probability of correct operation

p(ABC] - S - (l-p) 3 where p is the probability of a rectifier malfunctioning.

In this section we will show that no matter what value p assumes in the

region (0,1), the first stage of recursion is always more reliable than the

basic gate (S1 > So).

Using the notation introduced in the previous' reports p(T) = T,

p(A) - p(B] = p[C) - Q, p[AB) = p(AC) - p[BC) = R, p(ABC) S , we write the

recurrence relation S1(Q0 , R0 , So, To). I
S 3QS2 + 6R S T + 18Q R 2S1 003o~ + 8R 3 +3R5 2 +6oT o 8o

22 3 4 I
+ 18QoRoS + 18R2 S + 6Q ° S + 24R S + S

00 00 0 0 0 0 0 0

+ 18R 2 ST +3S 2 T 2 + 3S 3 T + 63Qo 2 R S 0
+ 8o2 Soo 0 0S 0 00o

" 63QRo2 S +27Q S2 + 9QoS ° + 27Ro S 0

" R003+18 00 R 0 00+1QS0 0 03 2+ 9R5 + 18QRSoTo +18QO TO

+ 18RS T+54QoRSo

Substitute Q0 M 2 ( -p)

Ro  M p(l-p)
2

S (l-p) 3  '
0

3To  p into the above equation.

3Then since we seek the region where SI > S we divide SI by So (=-p)
The polynomial which results is:

1 + 4p + 6p2 - 12p 3 _ 6p 4 + 21p 5 _ 66p 6 + 108p 7 _ 72p 8 + 71p 9 . I

It is plotted on the graph where it appears rather clearly that this ratio

is always greater than 1, for (0 < p < 1). Since the improvement which

results from recursion is greater as the number of inputs increases it is

expected that the result holds for all n > 3 (and in fact Maitra has proved

the result for n - 2 as well).
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56- s1
The significant feature of this curve is that T is always

S52- greater than I. For large values of P (the probability of

rectifier failure) the reliability SI is low despite the

48- fact that the ratio ST is high.

1 44-

40-

36-

U 32-
SI

I 28

24-

* 20-

I
12-

I 8-

I 4

0
0 .08 .16 .24 .32 .40 .48 .56 .64 .72 .80 .88 .96I P

I
Fig. 7 Improvement ratio at first level of recursion

i (3-input rectifier gate)
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PART II. THE FUNCTION ABvCD

Suppose first that it is desired to synthesize the function ABvCD

from a network of rectifier gates. Suppose further it is desired to make

use of triangular recursion to improve the reliability of these gates. How

should the recursion be applied? There are two obvious alternatives.

1) Apply triangular recursion to a basic triplet consisting of two "and"

gates feeding an "or" gate

A to D"

VV I

V7-SAS7 C GATE/1
\ v/

V
LEVEL I RECURSION

2) Apply triangular recursion to each of the gates which compose the

basic triangle

AS CD

S S

I

LEVEL I RECURSION

Then first consider Case 1. Tabulate the behavior of a zero level gate.
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I
I

Number of members of
Symmetry type that symmetry type

Number of resulting from which can occur as a

failures pfn failures) these failures result of n failures

0 (1-p)6  ABvCD I

I p(1-p) 5  BvCD 4

AB 2

2 p2(-p) 4  T 2

AvC 4

A 4

I F 1

AB 4

1 p 3(1-p) 3  T 6

F 4

A 8

AB 2

4 p4 (-p) 2  T 5

F 6

A 4

I p5( -p) F 4

T 2

6 p6 F I

I The probabilities associated with the different operating states at the

basic triangle level may be computed easily with the aid of this table.

Since the purpose of this report is only a brief inspection of this problem

we will assume a value for p, and compute the probabilities.

I p - 0.1

The distribution of operating states in the basic gate is:

p(ABvCD) - (1-p) 6 - .53

p(AvCD) - p(BvCD) - p(ABvC) - p(ABvD) - p(l-p) 059

* 81
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I

p(AB) - p(CD) - p(I-p)5 + 2p2(1-p) 4 + p3(1-p) 3 
- .073 1

p(AvC) - p(AvD) - p(BvC) - pfBvD) - p2 (1-p)4 .007

p(A) - p(B) - p(C) - p(D] p2 (1-p)4 + 2p 3(-p)3 + p4 (1-p)2 - .008 I
p(T) - 2p (-P) 4 + 6p (-P) 3 + 5p (-P) 2 + 2p (1-p) - .018

p(F] - p2 (-p)4 + 4p3 (1-p) 3 + 6p4 (1-p)2 + 4p
5 (1-p) + p6 . .010

With the aid of the following tables we can compute the recurrence I
relation which will tell us the probability distribution of the operating

states in a first level recursion. Each of the following charts represents

the resultant function of the first level triangular gate when the apex

gate is a particular function (fixed for each chart) and the inputs of this

apex function are specified by the left column and the heading of each

column. [These charts are read like the mileage charts on road maps]. For

exampleif the apex gate is performing the function A' B' (see chart I) and

lines A' and B' are the function ABvD (the next to the last row) and ABvC j
(the third column from the right) respectively, then at their intersection

ABvCD is the resulting function. Notice also that charts I and II are half

shown. Therefore, when totalling combinations, each entry with the exception

of those along the main diagonal is assumed to appear twice. I

In order to calculate p(ABvCD), it is first necessary to compute the

probabilities of the states which result from a conjunction of 2 lines

feeding the apex gate. These are easily taken from chart I. (Notation: we

will use the name of the function to stand for its probability -- thus (AB)

is p(AB)).

First, we will calculate probabilities of a network performing a particular

function when the apex gate is performing a conjunction.

These probabilities are conditional probabilities - actually

(AB) - p(ABI Apex gate is conjunction) and similarly for the other probabilities.

(ABvCD) - (ABvCD)[2[4(AvC) + 4(AvCD) + T) + (ABvCD)] + 4(AvCD)(BvCD) - .646

(AB) - (CD) - 2(AB)[(T) + 2(A) + 4(AvC) + 4(ABvC) + (ABvCD)]

+ (AB) 2 + 2(A)(B) - .126 5
82 1
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I
(A(BvCD)) . (B(AvCD)) - C(ABvD) - D(ABvC) - 2[(A)(BvCD)

I+ (A)(ABvCD)] - .0094

(ABC) - (ABD) - (ACD) - (BCD) - 2(AB)(C) - .0012

I (ABCD) , 2(AB)(CD) - .011

2
I (F) - 2F(1-F) + F - .02

The next step in our calculation is to compute the probability of the func-

I tion ABvCD resulting from the recursion. As before we will enumerate around

the apex function.

I {ABvCD[Apex functionP
Apxfunction Combinations yielding ABvCD I p(Apex function)

A' (ABvCD) 4(.008)(.53) - .017

A'vC' (ABvCD)2 + 2(AB)(CD) + 2(ABvCD)[(F) 4(.007)(.464) - .013
+ (CD)]

A' By (ABvCD)2 + 2(ABvCD)[(T) + 4(AvC) 2(.073)(.64) - .094
+ 4(AvCD)I + 4(AvCD)(BvCD)

A'vBI C' Note that an asterisk indicates that
the member results from conjunct
term and its value is taken from the

preceding table

4(AB) (C(AB-CD)J + 4(ABvCD) (AdD)
+ 4(AvCD)(A(BvCD)) + (ABv_.D)(ABCD)
+ (AB CD) (ABv.D) + 2 (AB) (qD)

+ 2[ (ABvCD) (AB) ± (AB (ABvCD)]
+ (ABvCD)(F) + (P)(ABkD) 4(.059)(.630) - .149

A'B' vC' DO Here all terms which appear result
I from a conjunction.

4(AB)(ABvCD) + 2(F)(ABvCD) + 
(ABvCD)

2

+ 2(ABvCD)(F) + 8(AB)(C(ABvD))
+ 8(ABC)(ABvCD) + 8(A(BvCD))(ABvCD)
+ 2 (ABvCD) (ABCD) + 8 (A(BvCD)) (C(ABvD)).i (.53)(.877) - .465

I

I



Therefore p(ABvCD) - .017 + .013 + .094 + .149 + .465 - .738 which is

greater than .53 which is the p(ABvCD in the basic gate. But this

improvement has been bought at a cost of 5 times the amount of equipment

in a nonredundant gate.

If we consider the second configuration described earlier in the

report, where we applied recursion directly to each 2-input gate which

composed the basic network, then one level of recursion (shown) costs only

3 times the amount of equipment in a basic gate. In an earlier report

(Haitra) the probability of successful operation of a first level triangle

of 2-input rectifier gates with p{rectifier failure) - 0.1 has been calcu- i
lated. It is 0.940. Successful operation of the function ABvCD requires

that all three triangles operate properly. This occurs with probability I
(.940)3 _ .830 which is greater than .738 and has been obtained at a cost

only 3/5 as great. This preliminary study, then, appears to indicate that

the simple basic gate is the more promising level at which to apply triangular

recursion. j

The Threshold Logic Realization

In addition to a realization of the function ABvCD using rectifier

gates we attempted a realization using threshold gates. As in our previous I
report (Special Scientific Report No. 1) it was assumed that errors in operation I
resulted from variation in the bias.

The first threshold realization we considered was:

In this case recursion yielded no stability under threshold variation.

The upper gate can be made mre reliable by recursion but the lower gate I

cannot. So we attempted to use the same network as before to synthesize
the function:I
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A 6 COD

I 2 2I IlJ

I

I Again our assumptions are that errors in operation result from

variations in the bias. These variations are represented by a normally

distributed noise signal superimposed on the bias signal and centered at

the appropriate level. Equally weighted two input threshold gates can

realize only 4 positive Boolean functions:the constant T (or 1), Disjunction

(or), Conjunction (and), the constant F (or 0).

I The tables for the resultant function again taken for each apex

I function follow

A,B C,D T D C F

T T T T T

D T AvBvCvD AvBvCD AvB Apex function

C T ABvCvD ABvCD AB Disjunction

I T CvD CD F

[ A,B C,D T D C F

T T CvD CD F

D AvB (AvB)(CvD) (AvB)CD F Apex function

C AB (AB)(CvD) ABCD F Conjunction

F F F F F

The probabilities for the basic gate can be computed from the tables. The

notation used below is:MN is the probability that a gate which is intended

to be an N gate is an M gate;thusC D is the probability that a disjunction

(or) gate will act as a conjunction (and) gate

p(T) - TD + CD[TC
2] + DD[2TC - TC2]

p(F) - FD + CD[2Fc - FC2 ] + DD[FC 2]

* 89
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p(ABvCD) - DDCc2

p(AB) = p(CD} - DD C F + CDCc T

p(AvB p[CvD) = DDDCF c + CDDCTC i

p(ABvCvD) - p(AvBvCD) - DDCCDC I
p(AB(CvD)) - p[(AvB)CD) - D CCDDD

p(AvBvCvD) DDDC2  
I

p(ABCD- C C 2

p(ACvADVBCvBD) - DcC D2

If we consider a* - 0.50 in our normal distribution, then I

CC  -DD - .6826900

DC = CD -  .1573050

TD - FC- .1586550 !

TC - FD - .0013500 I
Inserting these values into the equations on the previous page, we get:

pIT) - .1604961 1
p[F) - .06052949

p(ABvCDJ - .3181783 I

p(AB) p(CD) - .0741341

p(AvB) - p(CvD) - .0170767 1
p(ABvCvD) - p(AvBvCD) - .073314

p(AB(CvD)) - p((AvB)CD) - .01689

p(ABCD) - .073314

p(AvBvCvD) - .01689

p((AvB)(CvD)) - .01689

We are recurring the entire network as in the first case and we shall

develop our expression around the functions of the apex gate. Again,we

make use of charts to assist our calculation and we use the same abbreviations

as before (x) = p(x. I
90 I
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I Combinations Yieldinst ABvCD

Apex gate

2(AB) 2(A~vCD)T + 2(A~vCD) (Av~vCD) + 2(ABvCD) (ABvCvD)

I + 2(ABvCD)(AvBvCvD) + (AMvD) 2

This expression (above) will be denoted by a and the correspondingI expression when the apex function in AvB will be denoted by 0.

In addition the probability of a function F resulting from either

an ABl apex or an AvB apex will be denoted by (F) a or (F)~

respectiveliy.

2 (AyE) 2 (A~vCD) (F) + 2 (Al) (CD) + 2 (A2BvCD) (AB) + 2 (A~vCD) (CD)

I+ (ALBvCD) 2 + 2(ALBvCD)(ABCD) + 2(A2BCD)(AB(CvD)) + AvC)(BCD

ABvCD 2(a)(F.) + 2(Ala)(CDa) + 2(a)(ABa)+2 (a) (C1a) + (a)2 + 2 (a) (ABCD%)
+2(a)([AB(CvD)] ) + 2(a)([(AvB)CDI~) + 2(ADvACvADvBCvBDvCD)a

A~vCvD (a)(F 0) + (a)(13) + (a)(AB,) + (a)(CD 13) + ( ) (Fa) + (13)(Ala)I + (P)(CD%) + (CDa)(ABp) + ((AB(CvD)]a( ) + ([AvB)CD]d(0)

+ (CD P)(ABC,) + (a)([AB(CvD)] 0) + (a)([(AvB)CDIP ) +(ABCD)(03)

I+ (tAAC~vBD] a)(13) + ((AAC~vBD] a)(CD 1) + (ABCDO)(a)
+ (a)([AlvACDvBCD] P) + (IAlvACDvBCDI P)(CDa) + ([ABCvABDvCD] )(j3)

+ ([ABCvA2BDvCD] a)(Al ) + (IIABCvABDvCD] P (a) + ([ABCvABDvCD] )(AI )I+( (ALBCIADvCD]a) ( [AlvACDvBCD] 13) + (a)[A2BCvABDvACDvBCD] )
+ ([ABCvABDvCD] 3 )( [A~vACDvBCD] 0 ) + (3) ((ABCvABDvACDvBCD])?

AB(CvD) (Td (p) + (a)(0) + ([A~~D])(P) + (a)(Ty + (a)([ABvCvD] 13
" ([Av~vCD]d)(P) + ((AvBvCvD] a)( 3) + ([AvBvCD] P) + (a)([Av~vCvD] a)

+ ([A~vACvADvBCvBDvCD] a)(0) + (a)((ABvACvADvBCvBDvCD]t3

ABCD 2 (a)(Ta) + (a) 2+ 2([A~D] a )(a) + 2([AvvD]a)(l)

+2([Av~vCvD],)(a) + 2(iAlvACvADvBCvBDvCD]Q(a)

I(AvB)(CvD) 2 (f3) (T)+ + 2([A~vCDI,)(P3) + 2([AvBvCD],)(f;) + 2([Av~vvD] 1)(13)

I+ 2((A~vACvAvBvBDvCD] 3 M
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(AvB)V(CvD) 2(P)(F) + 0~)2 + 2(P)(AB) + 2(13)(CD,3) + 2(AB,-#(CD,)

" 2([AB(CvD)] p)(0) + 2([AVB)CD) 0)(P) + 2(ABCD,)(0)

+ 2([ABVACDvBCD] p)(0) + 2([A~vACDVBCD] p)(CD 13) + 2((ABCVA2BDvCD] 1)(13)

" 2(lABCvABDVCD] p)(ABf3) + 2([ABCVABDVCD],,)(EABVACDVBCD1,3)

" 2(P)(IABC~vADDvACDvBCD])

F -2F-f
2

(A), (CD) - 2(AB) (ABvCD) + (AB) 2() AB (2)T
(A)a a (B(v)+2A(T

+ 2 (AB) (AvBvCD) + 2 (AB) (AvBVC%,D)

(ABCD) a 2(ABCD)(1-F) - (ABCD) 2 u
(AB(CvD)] a-

[(AvB)CDI a -2(AB(CvD)) (T) + 2(AB(CvD) (A2DvCD) + 2(AB) (CvD)

+ 2(AB)(AB(CvD)) + 2(AD)((AvB)(CvD)) + 2((AB)(CvD))(AvB)

+ 2(AB(CvD))(CvD) + 2(AB(CvD))(ABVCVD)

+ 2(AB(CvD))(AvBVCD) + (AB(CvD)] 2

[ABvACvADVBCVBDVCD) a -2 (AvBvCD) (ABvCvD)J

[A~vACDvBCDI a

(AJCvABDVCD] a * 2(AVB)(ABVCD)

(ABCvABDVACDvBCD] a 2 ((AvB) (CvD)) (ABvCD)

Ta 
T

[AvBvCvD] * 2(AvBvCvD) (T) + (AVBVCVD)2

[ABvCVDI a

[AvBvCD] a 2(AvBvCD)(T) + (AvBvCD)

T -
2T -T 2

I
F p F 2

I
AB~ CD~ 2(AB)(F) + (AB) 2 + 2(AB)(AB(CVD)) + 2(A)(ABCD) i

[AvCD] 2[(AB)(CvD)I(F) + (AB(CVD))2 + 2(AB(CvD))(ABCD)
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I ABCD] 2(ABCD)F + (BD

(ABvACDVBCD]

[A2BCvABDvCD] 2(AB(CvD))(CD)

EABCvABDvACDvBCD]~ 2((AvB) (CD)) ((Al) (CvD))

[AvBvCvD] -2(AvBvCvD) (1 -T) - (AVBVCVD)2+ (v)CD

+ 2 (AyE) (ABVCvD) + 2 (AvBvCD) (CvD) + 2 (A2BVCVD)(AvBvCD)

[ABvCvD] 13I [AvBvCD] ~ 2 (A~vCvD) (F) + 2 (AlvCD) (CvD) + 2 (A.EvCD) (AlvCvD)

+ 2 (Al) (CvD) + 2 (ABVCVD)(Al) + 2 (ABVCvD) (CD)

+ 2 (A2BvCvD) (CvD) + (AlvCVD) 2+ 2 (A~vCvD) (AB(CvD))

+ 2(AlvCvD) (AvB)CD) + 2(A2BVCVD) (ABCD)I + 2 (AlvCvD) ((AvB) (CvD))

I ADVACVADVBCVDVCD]~ w 2( (AvB)(CvD)IAvD

Then plugging the values into these expressions get:

Pa.11739516 a -. 30742597

I[ABvACvADvBCvBDvCD] a .01074988
(AB) a 0 (CD) a .09237438

(ABCD) a.1323777

(A~vACDvBCD) a-
(ABCvABDvCD) a .0471757

(AB~AB~vC~vBD) a.01086687
(Avv~D)a .0057058

(AvBvCD)at = (AIvCvD) a .0057058

Ta .0257589983 [(CvD)]a, m [(AvB)CD] a .03095794

3F~ .0036638 13 .31 32488

(A~vACvADvBCvBDvCD) ~ .01074806

(AB)~ (CD) ~ .0278448

(ABCD).0142649I 101



(ABvACDvBCD)I = (ABCvABDvCD) .0025042

(ABCvABDvACDvBCD) 1 .01074988

(AvBvCvD) P .04441408

(AvBvCD) - (ABvCvD) .1164174

TP .2952332

[AB(CvD) ] - [(AvB)CD] .0048

and finally p(ABvCDJ - .245 which is less than .318, the

probability of correct operation of the nonredundant gate.

In addition the usual recursion of the basic gate yields no improvement A

in reliabilityand it appears that in this case triangular recursion is of

no value for improving the operation.

I
I
I

-i

I

I
I
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PART III. THE NOR GATE

I Up to this point, we have not actually applied recursive triangulation

to a complete set of Boolean functions - that is a set from which any Boolean

function can be synthesized. The "nor" gate is such a function. Consider

a rectifier transistor realization:

A ___

Fig. 8 Nor gate

I
If we consider only the active components failing then the distribution

of functional states resulting from the component failures are A 1, , X,

AC, BC, V0, T, F. These are the same as in the case of the 3-input rectifier

"and" gate except for the addition of the state F. If we apply regular re-

cursion then I level of recursion can not yield the "nor" function and, in

fact, from one level on the function computed will be positive. So we seek

the beat combining element for "nor" gates. We know from our studies of the

rectifier gates that the "and" gate would be the ideal combining element

were it not for the presence of the F. So we will study the effect of the

F if we attempt to combine three "nor" gates into a first level recursive

I triangle.

We assume mixed technologies (more than one type of gate available).

The object of the study is to determine how we could best improve the

reliability of the "nor" gate. The technique used compares 3 combining

elements -- a rectifier "or" gate, a rectifier "and" gate, and a majority

gate.

I
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A. Rectifier "or" Gate Combining Element

ABC ABC ABC

N N N

V

The distribution on the nor gate is again over X, I, T, 1, WC, 9d, Wg, F,

T, p(F) - p., using a rectifier "nor" gate as shownwith p - 0.2,and using
10

the notation of the previous report:

Q - pA) - p(0) - p{s) - 2 (1-p)(1L.) - (.04)(.8)(.98) - .0314
10

R - p(AB) -p1A) - PIK) - p(-p) (1-_ - (.2)(.64)(.98) - .125

T - p(T) - (p 3 )(.) - (.08)(.98) - .00785
10

S - p({BC}- (1-p) 3 (1-_) - (.512)(.98) - .504 1
p(F) - .02 I

The only way to get ABC from this combination is to have at least one

of the input gates functioning properly and the diode fed by that gate also

functioning properly.

p(ABC - 3(p2)(1-p) (.504) + 3p(1-p)2 ((.504)2 + 2(.504)(.02))

+ (l-p) 3 ((.504) + 3(.504) 2 (.02) + 3(.504)(.02) )

- 3(.032)(.504) + 3(.128)((.504)2 + (.504)(.04))

+ .512 ((.504) 3 + (.06)(.504) 2 + 3(504)(.02) 2 )

-. 0484

p( )- .227 no improvement;in fact,a decline. ii
104



I
Notice that if the combining gate is improved by triangular recursion to

its maximum reliability p(or) n .991 that the probabilities of sensitivity

to only 1 or only 2 inputs goes effectively to 0 and the only term which

need be considered is the final term.

p{1i.) - (.991)(.144) - .143, still more of a decline.

In fact a comparison of this calculation with the last shows that

greater improvement results when the combining element is not operating as

an "or" gate but rather when it is malfunctioning.

I B. "And" Gate Combining Element

The recurrence relation is almost identical with the relation es-

tablished for the "and" gate except that a factor should be added to ensure

that no input function is F.

I p(Nor) Z pffirst level and gate recursion) - p(no input F)

- (.889)(.98) 3 (.889)(.94) - .837 an improvement.

I In additionsuppose that the apex gate is improved by triangular recursion

to be most reliable. Again p(AB),p(A) etc., go to 0, so that the only

combinations left to yield "nor" are the following

(S] [6Q3 + 24R 3 + S3 + 18QR2 + 3T2 S + 3TS 2 + 63Q2 Ri Apex
+ 63QR2 + 27Q 2 + 3QS2 + 27R 2S + 9,S2 + 18QRT

I + 18QST + 18RST + 54QRS]

S = .991
Apex

Then, substituting:

[.991][6(.0314)
3 + 24(.125)3 + (.504)

3 + 18(.0314)(.125)2

I + 3(.504)(.0785)2 + 3(.504)2 (.0785) + 63(.0314) 2 (.125)

+ 63(.0314)(.125) 2 + 27(.0314)2 (.504) + 9(.0314)(.504)2

+ 27(.125)2 (.504) + 9(.125)(.504)2 + 18(.0314)(.125)(.0785)

+ 18(.0314)(.504)(.0785) + 18(.125)(.504)(.0785)

+ 54(.0314)(.125)(.504)] - .975, a decided improvement.

105

I



C. Majority Gate Apex GateI

ABC ABC ABCI

I N 
NI

\V 
I

MI

Since we are trying to demonstrate that the "and" gate is the

superior combining element, we can only emphasize the point if we assume

that we are working with a perfect majority gate. Now using the tables

on the next two pages and expanding around one of the 3 input gates:

p[!EC) -F[6QR + 6R2 + 2ST + S2+ 2S (I-F;-S)

" T[S 2+ 2SF]

" 3Q[S 2 + 2RS+ 2FS +2RF]

"+3R[S 2+ 4RS +2QF + 4RF+2R2 + 2SF]

+ S[S 2 + 2S(1-5) + 2F(1-F) - 2SF + 2TS + 6R 2 + 6QR]

106I
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F A A
I - -

I :~ *l * : .i . .

I e H ii.

I IC AB. BC Bl 1B(. ( )

T A B M 6 C T A T
F F F F F F F F F F

I

T

Ii

BC I I
T3C r aI X6 Wd WiIT T T T T T T T T

IF X I zB Xg U BC X T F

This chart and the one following are for the case that the apex gate

is a perfect majority gate. The two dimensions of each chart stand for two

of the three input gates. The label on each section stands for the third

input gate.
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I

I [.02][6(.0314)(.125) + 6(.125) 2 + 2(.504)(.00785) + (.504)2

+ 2(.504)(.476)]

I + (.007851[(.504) 2 + 2(.504)(.02)]

+ [3(.0314)][(.504)2 + 2(.125)(.504) + 2(.02)(.504) + 2(.125)(.02)]

+ [3(.125)][(.504) 2 + 4(.125)(.504) + 2(.0314)(.504) + 4(.125)(.02)

+ 2(.125)2 + 2(.504)(.02)]

+ (.504)[(.504) + 2(.504)(.496) + 2(.02)(.98) + 2(.00;85)(.504)

+ 6(.125)2 + 6(.0314)(.125)]

I = .74355

This represents an improvement, but not nearly as great an improvement as

with the "and" gate.

Suppose that we assume a much higher probability of Foccurring say at

p(F) - .2

I Then Q .026

R - .1024

S - .4096

T - .0064

F - .2

In the case of an "or" combining element, p(ABC) - .2490 (>.227, the previous

value), but still not an improvement over the basic gate.

In the case of an "and" combining element, p(IB) = (.89)(.8) 3 
- .455,

a decline over the previous value (.837) and only a small improvement over

the basic gate reliability. So the effect of the "and" combining element

appears to be quite sensitive to the value of p(F).

Finally, the majority gate combining element yields pfiiC'J = .675,

which represents a decline in the previous value but not as great as the3 decline which resulted with the "and" gate combining element. If instead

3 109
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of the perfect majority gate we had assued a majority gate similar to the

type discussed under B. above then the values corresponding to p = .02 and

p - .2 would be .687 and .631, respectively, a decline as before but

actually a relatively insensitive reaction.

This last part has demonstrated that the choice of combining element

is greatly influenced by the probability of the operating state, F. In the

case that this probability is very small (the case more likely to actually

occur) the "and" gate is the better combining element; as this probability

increases the majority element begins to be more promising.

I
I
I
I
I

I
I
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IV. ON THE USE OF FEEDBACK IN LOGICAL NETS

TO PROVIDE SELF-CORRECTING CAPABILITIES

by C. V. Srinivasan

A. INTRODUCTION

The problem of developing techniques to construct reliable logical nets

from inherently unreliable component devices is intrinsically of great value

to computer designers. Considerable amount of creative talent has been

directed in recent years toward discovering effective and practical solutions

to the problem. Surely, there are many reasons for interest in this problem.

It is reasonable to expect that in the not too distant future it will

be technologically possible to fabricate complex logical nets containing

possibly millions of logical component units, each of which will be capable

Lof operating at the rate of many millions of operations per second. Such

units are likely to be of extremely small size. Also, it is not difficult

for a computer engineer to conceive of a need for such large systems; the

biological systems always provide the necessary inspiration. In such systems

even a very small transient error probability of, say, one in a billion operations

j per component unit, is likely to cause millions of errors in the calculation

every second. Hence, in order to make any meaningful computation at all, some

form of automatic error correction is necessary. Further, in such systems

having millions of components there will always exist some inevitable error

in fabrication; and in the case of microminiature components, repair and

maintenance will require replacements of basic modules, each such module

being a fairly complex logical net. Therefore, to minimize the cost

of such systems it is necessary to introduce some redundancy in their struc-

ture, so that a few failures will not necessitate a replacement of an entire

module.

It is also true that the present-day computers are being frequently

used to perform ambitious tasks,and oftentimes in such applications the cost

of an error will be very high. So it is very important to construct nets

of high reliability. In satellite systems, for example, the requirements

on reliability are particularly severe, as in such systems error checking

and maintenance by a human being is impossible, orat least, is likely to

be extremely costly. The above requirements have only introduced an

urgency in the need for finding a solution to the problem of 'reliability'.
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To define the concept.-of reliability of a logical net more precisely,

it is necessary to understand the nature of errors and/or failures that are

likely to occur in such nets and how one would wish to combat them.

A logical net, F, having m input lines and one output line, usually

will perform a mapping of the values assumed by the input lines to the

values that the output line can assume. Let us denote such a mapping by

the logical function,

F > = yi (1) I
where X is a possible valuation of the input lines and yi is the corre-

sponding output value. The net might have been designed to realize a I
desired logical function, f' and because of the possibility of erroneousoperaton ofthe lgical D'oFs

operation of the logical components used in the net it is likely that ? is

sometimes different from fm- If the errors in the net are transient, (we

shall, hereafter, refer to this type of errors as Type I errors) then in a

sequence of successive input-output mappings performed by the net (we shall,

hereafter, refer to such a sequence of mappings as a computation done by

the net) an input-output pair (X , yi) that does not satisfy the logical

function, JD' is likely to be followed by other pairs that do. However,

every particular erroneous mapping (we shall, hereafter, refer to an

individual mapping as a calculation) performed by the net was left uncor-

rected. To combat this type of error one would like to design nets in

which the probability, pi, of occurrence of an erroneous calculation is

minimized. The smaller this probability is, the more reliable will be the

calculations performed by the net.

In order to simplify calculations of error-probabilities in the case

of transient errors, it will be necessary to make some assumptions on the

probability distribution of error-occurrence as a function of time. To

begin, we would like to assume that the probability of occurrence of a

transient error would remain a constant for a sufficiently long period of

operation of the net, as shown in Fig. 9.

I
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IPROBABILITY OF
TYPE I ERRORI

I

p'0  .... t TIME OF OPERATION

Fig. 9 Probability of occurrence of a transient
error in a logical net, as a function of time.I

As the period of operation of the net increases, due to an aging

process, the net may deteriorate, thereby increasing the probability of

occurrence of an error. To combat such deteriorating situations, one will

have to develop some means of recognizing such deterioration and properly

replace some components in the net. This calls for entirely different

techniques of combating errors, and a discussion of this will be best done

I under a different error category.

Another assumption on transient error distribution will be that the

probability of occurrence of such errors in successive calculations would

be independent. This assumption is made primarily for the purpose of

I simplifying calculations to obtain error estimates. The scheme of error

correction we shall employ does not depend on this assumption for successful

I operation. However, an estimate of improvement for the above case of inde-

pendent probability distribution for successive calculations, will give us

some idea about how effective the error-correcting had been. We may, there-

fore, write for Type r errors, that, for an input valuation, X,

I - {D (X) with probability (1-p(
( = (2)

( X ) with probability Pi

in the case of nets where each input and output line assumes at a time only

one of the two values 0 or I (D is the complement of f!). Generally, the

probability pi could be a function of X. In such a case one could safely

choose the largest pi as the first measure of unreliability of the net. Let

Max Pi be called p'.
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However, if a permanent error (we shall, hereafter, call this Type II

error) occurred in a net due to, say, the breakdown of a component in the

net, then in a computation performed by the net, the outputs after the

instant of occurrence of the error are likely to correspond to some other

arbitrary function, fE' or it may even just remain at a constant value. In

the former case, if one knew what error occurred one could perhaps just I
use an apropriate additional calculation for error correction. In the

latter case, of course, the net has to be replaced or repaired after

the recognition of the error, and this requires that the computation be I
temporarily stopped. It is clear that to do any error correction, recog-

nition of the error would be essential. To combat this type of error it

is necessary either to construct nets with components of a very

low probability of complete breakdown or to build into the net a capa- I
bility to repair itself. Repair could be through error diagnosis and

component replacement or else through a direct substitution of an alternate

net in place of the one that had failed. Such error correction could be

done also in anticipation of a failure due to, say, an aging process,

referred to earlier.

If the probability of occurrence of a need for replacement, during a

calculation is p" and p" remains a constant for a sufficiently long time,

then one may choose p" as the second measure of unreliability of the net.

Or, the expected value of the life of a net - the life being the

period before the first repair - may be chosen as the second measure of

reliability.

Two general techniques of interest and of some promise are at present I
known for designing logical nets having a p' (probability of occurrence of

a Type I error) less than that of the component parts used in the nets.

These two schemes also improve, to a certain extent, the second measure of

reliability - viz.the life of the net. The first is von Neumann's
3

majority-vote-taker scheme and the second is the triangular recursive I
scheme1 5,16 developed at this laboratory. In both cases errors in calcu-

lation are masked by the superfluous calculations that tend to reinforce j
preferentially the probability of generation of the correct output. Both

these schemes do not offer the capability to detect and diagnose the
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occurrence of errors. One might, therefore, say that these schemes are, in

a sense, passive. The second scheme is even further restrictive, because it

will not result in an improvement of reliability in all possible logical

functions. ("not" function is a typical example where the triangular recursive

scheme is not applicable.) However, for those functions for which it is

I applicable, the triangular scheme will yield greater improvement in reliability

than the majority-vote-taker scheme. Thus, by the proper use of both the

schemes, one may introduce a considerable improvement in the reliability of a

logical net.

I Logical nets that are designed to serve usefully for a long period

of time should have some facility to combat the effects of deterioration

3 of component units due to aging or other external interference. One would

further like to have such a net take preventive measures to avoid a failure

that may be anticipated. Such features will extend the expected life of a

net. The passive schemes described above will not provide these capabilities.

Some form of active error correction through error-detection and -repair is

definitely called for to extend the useful life time of a logical net.

Such a self-correcting net would have to be basically a sequential

net with a finite memory. The general problem of automatic error diagnosis

and repair in logical nets with memory, seems to be a very difficult problem:

at least, the presently available concepts appear to be inadequate to develop

and analyze significant techniques. In this report we present a simple

scheme which, in a sense, is self-correcting. However, the correction is

achieved through the substitution of a new unit in place of another that

I produced an erroneous calculation and not through error diagnosis and repair

at the component level. In the context of this model, the problems that

arise in the design of such nets are pointed out. This method of correction

may be uniformly applied to all logical nets, as long as new substitutes are

easily available. It is our contention that diagnosis and repair at the

component level are essentially the properties of systems that possess the

facility for practically unlimited growth - we have in mind systems that can

produce practically unlimited quantities of the basic cells with which they

are made.
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Clearly, for a given component reliability, every improvement achieved

in the reliability of a net, composed of the given components, has to be paid

for in some form or other. In the passive schemLS the designer is required

to pay in terms of the increased number of components used in each net, and

the consequent increased delay in operation. However, the designer does not

have much control over the amount of time that a net will consume to perform

an operation. Further, the amount of time delay will remain the same irre-

spective of whether an error occurred during a calculation or not. In the

case of error detection and repair also the designer will have to pay in

terms of greater number of components and greater time for computation. But,

in this case, the time delay may be used more efficiently. For instance, the

length of a computation will be large only in case an error occurred; other-

wise the delay will be small. Also, the delay time may be used for error-

diagnosis and error-signalling. As the component units deteriorate in a

large logical system of self-correcting subnets, reliability will not decrease.

However, more time will be needed for computation.

B. THE DESCRIPTION OF THE MODEL I
To begin with, we shall confine our attention to nets having a single

output line and arbitrary number of input lines. Each line will be capable

of assuming only one of the two possible values at a time, namely 0 or 1.

Each aet will consist of two parts, as shown in Figure 10. T

FORWARD PATH
x.

X1 
7

> _ Y i
Zi LLI

_W________

FEEDBACK PATHI

Fig. 10 The Block Diagram of a Self-Correcting
Net.
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The part F is in the forward path and the part G is in the feedback path.

The delay units represent the intrinsic delays involved in the calculations

of F and G, and in addition, may also have additional periods of delay intro-

duced for the purpose of synchronization with a master controller, or for

whatever other reasons that might exist. The feedback net G is the error-

correcting net. For each input valuation X of the net F, the net G will

3 decide whether the input-output pair, (X-I y), satisfies a desired logical

function fD and gererate an appropriate control signal, x,, that would con-

dition F suitably for the next calculation. Of course, the net C is also

likely to generate erroneous outputs. However, when z is correct its value

will indicate whether the pair (X- y.) is a proper pair or not.

For a given fixed input, X., the net in Figure 10 will produce a compu-

I tation (a sequence of calculations) consisting of pairs of outputs (y,, z,).

In this computed sequence the value of z in each pair will indicate whether

the corresponding yi is the correct output or not. In general, instead of

keeping the input, X, fixed it could be encoded into an input sequence and

in this case a sub-sequence of the computer output sequence would be the

required, correct output sequence. In the following discussion we shall

assume that the input X is in the uncoded form - i.e., is held fixed for a

given computation. It is our opinion that computation with encoded inputs

would not cause any additional advantage in reliability of operation.

I Let the mappings performed by the F and G nets be denoted by the
logical functions f and f G , where m of the inputs are external inputs,

j the (m+l)st being the feedback input:

f m+ z " i (3)
f~m +1 (X, Y) = zi (4)

3 The functions F and G may be expanded as follows*:

F =V zi) - gl 1( ) . zi + g12 ( ) i(5)

m1 ( ,y ). sm (Xm•Y 2 ( ) "Y (6)

* *. denotes logical AND, '+', logical OR and '- denotes complementation.
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where the g's are functions of m arguments. To specify completely

the computation performed by such a finite sequential machine it is necessary

to fix a distinguished initial state (namely, the contents of the delay units

at time 0) and an end condition for stopping the calculations. Also, the

sequence of output pairs, (y,z), should be properly indicated as functions of

time.

Assuming that the delay introduced by the delay units in Figure 10 is

of unit magnitude and the net as a whole is periodically activated to perform

a calculation at the beginning of every unit interval of time, the equations j
(5) and (6) may be written as follows:

Yn ain(X) Zn-1 + a2 (i) ni (7) I
and -

Zn=b (X) Y b (X) Y (8)
n In-I. n-i 2n- =1 n-i

where n - I, ... is the time parameter, zn, y are the nth values of the I
outputs, and aln, a2n, bin and b2n represent the 'g' functions of equations

(5) and (6) at the instant n. In general, it is thus possible that as n

varies the g functions may also vary. Let us now see how the initial and

final conditions may be specified for the equations (7) and (8) and how the

resultant computation may be used to calculate a desired logical function I
ft .
D

The end conditions may be specified in one of two possible ways. One I
can fix the length of computation for a given input to be the same number,

N, and specify a rule for selecting the appropriate output from the N

calculations. This, of course, will require additional equipment to perform

the selection;and further, in this scheme one does not take advantage of the

probabilities of distribution of occurrence of errors to increase the speed

of calculation. In fact, the selection procedure will be consuming additional

time for completing the calculation.

On the other hand, one may decide to terminate the calculations for I
a given input, on some criterion depending upon the relative values of the

outputs (y,z). There are only three distinct possibilities in which this
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j may be done,and these are*: (Note that the corresponding outputs, as shown

in Figure 9, are always separated by one unit of delay.)

1 (1) Yn -n+1--Yn I f DW

1 (2) Zn+1 1 -n D(-2

(3) Zn+ 1  
0 Yn f-O "

m Permutation of y and z in the above three conditions does not change the

essential nature of the constraints.

In case (1)an external comparator is necessary to determine that yn and

Zn+ 1 are of the same value and generate the appropriate end signal.

The remaining cases presume the existence of some form of verification within

the net;and, hence, the proper value of Zn+1 may itself be used as the

terminating signal. In all the three cases an erroneous output yn 0 fD(20

will be chosen only if both y and z are simultaneously in error. Also, for

a given input, calculations will be continued only as long as there is an

error in the output; and this feature, if properly used will result in the

3 saving of time.

In the following discussions we shall consider only cases (2) and (3)

3 for the end condition, as these seem to take into account more comprehensively

than the rest all the equipment needed for the calculation. It should, of

course, be noted that in our discussions so far, we have implicitly assumed

that there is an external master controller that provides, periodically, the

clocking pulses needed for starting each calculation.

I Also, as the length of every computation is not the same, it is necessary

to introduce a facility to gate out the proper result at the termination of

3 a computation and to gate in a new set of inputs for the next computation.

In cases (2) and (3) of the end condition, the terminating value, zn,

may be used to start the gating operations at the input and output ends of

the unit. In such an arrangement the terminating value, zn, may also be the

initial value, zo0, for the next computation. Let the initial value of y,

namely y0, be chosen to be the same as the value of the previous output.

3 Therefore, y0 may be either I or 0. This arrangement eliminates the necessity

* The reader may easily verify this assertion.
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for resetting the initial values at the beginning of each computation. The

problem now is to get the conditions on the functions a In' a 2n' bIn and b 2n in

order to calculate a desired function, fD' with the above model of a sequential

net, using the smallest necessary number of calculations. We shall see that

the imposition of the restriction of minimum computational delay forces the

functions an an, bin, and b2n to assume the value of either fD()o
- or

iD(2_), for all n.

C. DETERMINATION OF THE FUNCTIONS a • a , b l b 2

Before proceeding with the analysis let us take stock of the assumptions

we have made so far, and the limitations these assumptions will impose on the

general validity of whatever conclusions we may arrive at.

We have now three requirements on the computation performed by the net

of Figure 10. These are

(i) The net should start each computation from one of the prescribed

initial states. (Notice, however, that each calculation of the net might

start from any one of the four possible initial states).

(ii) A computation is terminated when the end condition is satisfied.

At the termination of a computation the selected output value should be equal

to fD(•

(iii) In order to minimize computational delay the net should seek to

satisfy the end conditions in each calculation. Also, after termination, the

selected output of the computation must be equal to iD(;).

The initial state of a computation was chosen to be the same as the I
terminating state of the previous computation. This was possible because

the terminating state was used only to do the proper gating at the input and I

output ends, and not to terminate the operation of the net itself. The other

possibility, namely resetting the initial state to a fixed distinguished

value at the beginning of each computation will require additional equipment

to do the resetting operations. This will only increase the complexity of the

net, thereby reducing its reliability of operation. Therefore, the choice

we made is preferable.
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Out of the three possible end conditions, the latter two take into

account, more comprehensiveiy than the first, all the operations that the

net should perform to zomplete a computation. Therefore we shall confine

our attention only to the end conditions (2) and (3). In fact, if an

I external comparing device is introduced in the net G of Figure10, for the

end condition (1), to generate the terminating signal, then the end condition

(1) will reduce to one of the remaining two conditions. Thus, analysis of

the net for conditions (2) and (3) should exhaust all the possible termi-

nations with which the net might be operated.

The third requirement is necessary to satify the condition that each

computation should be of the shortest possible length. If this requirement

is not imposed, it is not clear a priori, what function the net should

calculate in each operation.*

The operation of the net satisfying the above three requirements, for

3 the end conditions (2) and (3) is described by tables I and II, respectively.

These tables may be read as follows:

I Table I:

(i) Design Requirement: Each computation should be of the shortest
* possible length.

(ii) End Condition: Zn+'l - Y = f(X-

(iii) Initial Condition: Yo - 0 or 1 and z°0
Y Zn X Y 1  z a(X b(X

0 1 1 0 1 * * 0

I 0 1 0 0 1 0 1 * 1

I I I1 1 1 I 

I 1 0 0 0 0 * 0

0 0 1 1 0 1 0

0 0 0 0 1

1 1 0 1 1 1 1 1

1 0 0 0 0 * 0 0

I * It is likely that the function to be calculated by a net, in each
calculation, may be determined through some conditions, connected with error
diagnosis. In such a Lase the requirement that each computation be of the
minimum possible length, will not be satisfied.
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Table II:

(i) Design Requirement: Same as Table I

(ii) End Condition: Z 0 - Y = f(X

(iii) Initial Condition: Yo 0 or 1 and z 0- 0.

Yn z fD(X) Yn+I zn2 aln(Xi) 82n(-Xi) "In(% ) b2n(XjI)

0 0 1 1 1 1 I i
0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 1
1 0 0 0 1 * 0 1

0 1 1 1 1 1 1

0 1 0 0 0 0 0 1
1 1 1 1 0 1 0

1 1 0 0 1 0 1 I

Let us first consider the Table I. The first two columns of this I
table give the values of the outputs at the instant n, for n - 0, 1,

The third column gives the value of fD(Xk), for the input X, at the instant

n. The fourth and fifth columns give the expected values of the outputs

at the next instant, to satisfy the requirements that the proper computation

should be of the shortest possible lenath. For these input and output con-

ditions one may calculate from equations (7)and (8) the values that the functions 1
'at and 'b' must assume, for the input Xi.

Consider, for example, the first row of Table 1. For the initial con-

ditions shown, one gets from equations (7)and(8)that for n - T,

YT" - aIT(X) - 1 (9) I

zT+ I " b2T(X) - 0 (10)

and a2T(X) and bIT() might assume any values whatsoever. As z T+ - 0 the

end condition is nnt satisfied, and, therefore, the net goes through another I
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calculation for the same input X ; only it starts from the initial state,

(y,z) - (1,0), instead of (0,1). The operation of the net, this time, is

described by the last but one row of Table I. The final outputs are, rfrom

i equations (7) and (8)]

YT+2 - a2(T+1)( ) -I (11)I
zT+2 b -I1, (12)

I and these do not depend on the values assumed by aI (T+I)(X ,) and b2(T+1)(Xi) ,

as indicated by the '*' in the table. The output pair (y T+1 zT+2 ) now

satisfies the end condition for Table I and as such the computation is termi-

nated.For other initial states the table is similarly filled in. Table II

is constructed similarly, with the only difference that the end condition

is now different. The following observation concerning the operations shown

in Tables I and II are now pertinent.

I 1. Comments on Tables I and II

Comment 1 The value, z n1, in Tables I and II fixes the value of

an(X ) a fD(X) for all Xi. When z -0 , ain would still have the

same value, unless, of course the net corresponding to a,, was itself

changed by the change in the value of zn. However, when zn - 0, the output

is independent of a n(X), as may be verified from equation (7). So one

would find no reason to modify the net of alln as a function of zn. Thus,

I the net may be kept fixed for all time, n; no additional advantage will be

gained by making the net adjustable.

I Similarly zn = 0 fixes the function a f for all X and for
n2n D =i

all time n, and in this case (zn = 0) the output is independent of a (X ).

Therefore, if two separate, identical nets were used, one for aIn and

another for a2n, then depending upon the value of zn the output, yn41, will

3 depend on one or the other of the two nets. The input Zn may be used to

switch the operation from one net to the other depending upon which one

produced a wrong output. This feature introduces the self-correcting

property in nets of this type.
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Likewise, yn 0, fixes b2n a f0 in Table I and b2  = fD in Table II;
Y 1, sets bn f fD in Table I and b D in Table I,

For these values of 'at and 'b' functions equations 7 and 8 may be I
written, for the end condition (2) as

Yn+1 f D(2) " Zn + fD (20 " zn  (13)

z n+1 f D ) " Yn + FD(X) I n (14)

and for the end condition (3), 1
Yn+ f D (f) " Zn + fD(X) " zn (15) 1

and znt1 f D( D " n + fD ( ) * Yn (16) I

The use of the same function fD more than once in the above equations signifies

the fact that each value would be calculated by a distinct logical net.

The above values of the functions, to be calculated by each net in

each calculation, were obtained because of the restrictions imposed on the

required values of yn+I and z in columns 4 and 5 of Tables I and II. The

values of y n+ and z n+1 were chosen for each calculation such that the whole

computation will be terminated with the shortest possible delay, producing

the correct output yn = f"D(X). One may easily verify that the above assign-

ment is the only possible one, that would minimize the length of each

computation.

Comment 2. For no two distinct initial states, (yn' Zn) the same I
pair of functions (a in, b n), (i,j I or 2) is used in the calculations.

Therefore, unless an erroneous operation produces at the instant (n + 1) J
the same erroneous outputs as at the instant n, a new calculation is

always done using a new net. I

Comment 3. The equations 04) and 06)represent just modulo 2 com-

parison functions, which may be written as I
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I
and::::z' reqire value f ( 6)aie

where C+ indicates the 'Exclusive OR' operation. The feedback network
Stherefore, compares the value of y n with the required value, f D(2j), and gives

a command for recalculation whenever Yn " YD0-

I In fact, in the discussion in section B, on the model shown in Figure 6

we had required of the net some such similar operation. There we said that

U the feedback input would condition the net suitably for the next calculation.

The above arguments indicate that the only possible useful conditioning that

may be done will be to give a command for recalculation, possibly using an

alternate net. This conclusion will be valid, of course, only if the require-

ment of minimum computational delay is imposed on the net. At present, it is

not clear, what other general requirement may be substituted in its place.

The initial and final conditions were specified, in a sense, in a very natural

way. In this case, it is clear that there are no other boundary conditions

that could be more profitably used.

I We believe that even in the case of computation with encoded inputs

the same conclusion would be valid. However, it is difficult to prove this

conjecture in this generality, because it is not clear what general restric-

tions exist on codes for computation. (In an analogous situation in the case

3 of communication systems, a well-known set of general restrictions on possible

efficient codes for error-correction is provided by the properties of group

I codes).

3 2. Generalization of the Concepts:

The above arguments can be directly extended to the case where there is

5 more than one output line for each net F and G of Figure 10. Let the output

lines of F be denoted by

Y- -"Y Y2 " ' Yd I t > 1
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and those of G by

z - (z 2 ... z t t > .I

Let y, and E denote particular valuations of y and z_ where

"- Y i y2i 
... Yti

)

and 1i - (zl z21 ... zti). I

y, and Zj for i,j - 0,1, . 2I will denote the 2t valuations that y and
z might assme. Let Yand Z be the values of a logical function, defined

on y and z as follows: I

Yi- 1 - ZY ZL I
and Z -- z

For each pair of output lines Yk and zk, k 1 1, 2, ..., t their values

Yk (n+1) and zk (n+) at the instant (n+I) will be given by an equation of

the form 2*

2 -I

Yk (n+1) - aki n ().Z(n), k - 1, ... t (17)
2t-I

and zk. (n+fl) - 2- bkin ().Yi(n), k - 1, ... t. (18) 1
J-0 I

In the above equations akn(X) and bkin(X) are the functions that

generate the kth outputs, Yk and zk , respectively, at the instant 3
n - 0, 1, .... For I - 0, 1, and k - I the above equations will reduce to

the form of equations (7)and (81 (In(7)and(8)the subscript k was not necessary). 3

den6tes a logical 'OR' sumation.
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I At any instant n, if the output valuations were Y,(n) and zj(n).

0 < i, J < 2t-1 then from equations (17) and (18) we get:I
Yk (n+1) - akJ (n))k - 1, ... t, (19)

i zk (n+1) - bkjn (_)k - 1, ... t, (20)

I where X would be the input at the instant n. Thus for each pair of output

vectors (zi, Z) the two nets corresponding to the functions akjn and bkin

I are chosen for calculation, for each k - 1, ...t.. For the same reasons

discussed in section C.1, comment 1, the functions a' and'V may be chosen

to be independent of the time parameter, n. Also, for each k, 1 < k < t

if the desired output function is f Dk(1). Then from requirement 3Pwe will

I obtain that

kj = fDk

for all j - 0, 1..., 2t-1, and all n - 1, 2,I
For any given value, yi(n)the value &j(n+l), may be used to indicate

whether yi(n) is correct, and if it is not correct, which one of the 2 t-1

possible errors is present in X1 (n). In this case, therefore, the design

of the nets corresponding to the functions bki will depend on the nature

of error diagnosis that is desired. It should be valuable if some general

conditions could be obtained on the specification of the functions bkf.

It is not clear at present, what the error-correcting potential of

this scheme will be, and taking into consideration all the extraneous

control nets, what the overall gain in reliability will be.

The values of the probability of occurrence of a proper computation

and that of an erroneous computation for some typical nets are calculated

in the next section. Also, the expected length of a proper computation,

as well an an improper one, are obtained. We shall discuss the results and

their significance, in detail, in the next section. The following general

coments may be made concerning the scheme, at this moment:
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It is clear that the process of substitution of a new.net in I
place of another that generated an erroneous output, indicates that, with

this scheme it should be possible to combat both type I (temporary) and 3
type 2 (permanent) errors.

Also, there is the possibility of developing error-diagnostic

nets which will prove to be of great value in any large data processing

system. I
It appears that if more redundant alternate nets were available

in a net then greater reliability of operation would be realizable. Also, I

the principal concept of substituting an alternate net in place of an erroneous

one, is very elementary in error-correction. The above scheme seems to offer

a natural way of doing this, in practice.

We believe that, the model discussed so far, provides a good context I
in which further investigation may be made to understand the process of

self-correction and possibly develop general theoretical concepts on error- j
diagnosis and self-repair. We shall be interested in answering questions

of the following nature: I

1. For a given number of feedback lines what boundary conditions

will yield the maximum reliability? The selection of an appropriate

boundary condition would be influenced by the following considerations:

The number of additional operations necessary to termi- I

nate one computation and start the next computation.

The nature of-error-signalling, if any, that is expected I
of the net.

The cost of termination in terms of loss in reliability.

2. If the precise nature of possible errors were knovnis there

any significance in changing the logical function for different calculations

in a computation?

In the above discussion we assumed the logical function for each ii
calculation to be Yj) By changing the logical function for a given

net, it may be possible to perform error-diagnosis.
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I 3. In a large net composed of subnets of the form discussed so

far, the total net is essentially asynchronous, because, depending upon

the occurrence of errors, each subnet may take a different time to complete

its computation. This calls for a proper scheduling of each operation or

provision for buffer storages at the input of each subnet. Depending upon

the probabilities of occurrence of errors,a queuing problem arises. The

length of the queue at the input of each subnet will directly be a measure

of the performance of the net. It remains to be seen how this property

can be exploited to do error-prediction in a systematic way. In the design

of a large net oneb aim should be to minimize the length of the queue at

the input of each subnet.

4. In every net of this form a possibility exists that the control

J net might fail, causing a computation to be continued indefinitely without

termination. To combat this type of failure one may assign a maximom length

N for each computation. After N calculations, it will, therefore, be neces-

sary to adopt some type of statistical estimate to choose the correct

output. A study of this will also be a part of a study of self-correcting

system.

These problems arise in a natural way in :the context of the self-

correcting scheme discussed in this report. It is our opinion that a study

of these problems in greater depth would be a worthwhile task.

I D. THE NAILYSIL OF DYNAMIC BEHAVIOR OF A SELF-CORRECTING NET

The dynamic behavior of a self-correcting net may be

described by the probabilities of occurrence of the following:

(1) A proper computation of length A.

(2) An erroneous computation of length A.

(3) A computation being of length greater than 1.

Let the respective probabilities of events (1), (2), and (3) be denoted by

p p(A), (p stands for 'proper'), Pe (), (e for erroneous) and Pc (), (c for

continuation). The overall performance of the net may be evaluated from:
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P ) P(1) (21)

1-1

P. Pem (22)

Am 1 1

where Pp is the total probability of occurrence of a proper computation of

any length, and so also, Pe' that of an erroneous computation. 
It is clear

that,

Pc('t'- 1) P () + P(e) + P0 ('), (23) 1
and, therefore, from equations (21), (22) and (23).

P " 1) Pc( ) - Pc(O) =P + P - 1 (24)

AinI

Also, it is true that

Pc(1) 0 (25)

The expected values and variances of the lengths of a proper, 
as well as an

erroneous computation are of significance in evaluating 
the performance of

such nets. Let E(p ) and E(A e) denote the respective expected values. So I
also, let V(A ) and V(Xe) denote their variances:

p

E() e I / () Pe (26) I
V(1p P [I -• P p)] P ())/p (28)
E(1e) "- Q._., Z P(,) / Pe (27)

V(Ap) " (N [e " - )2 PZ)/ ep(28)

V(ja) - (1 - E(,e)] 2 P(Z)) / p.. (29)

A-1
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For given component reliabilities a good design for a self-correcting net

should minimize Pe, E(Zp ) and V(p ). Also it will be desirable to have

E(Ae) > E(Ap). (30)
ep

I In fact, the most desirable situation will be:

E(Ie) -V > E() (31)

The above conditions will assure us that a proper termination of a compu-

tation is always more likely to occur than an errorneous one.

We shall now discuss the analytical techniques that might be employed

to calculate the above statistical parameters of a self-correcting sequential

I net.

i 1. Temorarv Errors: (Tyve I)

(a) The Mathematical Model:

In the case of temporary errors the operation of a self-correcting net

may be described by a Markov chain diagram, as shown in Figure 11.

I

,So 3
I

I Fig. 11 A Harkov c-hain diagram of a self-
correcting net.I 131



Each node in this figure represents a possible output state of the net at

an instant, n. A directed branch, between a pair of nodes, indicates a

possible transition, in the direction of the branch, from one output state

at an instant n, to the other at the next instant, n + 1*. A self-loop

indicates that it is possible to have the same output state at successive

instants of time. The weight on each branch indicates the probability of

occurrence of the transition represented by the branch. The probabilities .

gi for - a, b, 73 5 and i - 1, 2, 3, 4, in Figurell, will be functions of

the input of the net at an instant n, and

4 .

I ] for y. and 5 (32)

Such a net will have a subset of states, say S0 , called the set of

distinguished initial states. For any input, X, a computation by the net

will always start from one of the distinguished initial states, aoi r S0.

Depending upon the terminating conditions, one or more of the output states

of the diagram will be chosen as the terminating states of the net. A

computation by the net will always terminate in one of the possible termi- !

nating sates. Let the set of all possible terminating states be denoted by

ST . A proper computation may be defined in one of the following ways: J
Definition 1. (Proper computation): i

(1) A computation, whose terminating state Spi E Sp(X)C ST' where

Sp(X) is the subset of proper terminating states, for a desired output X. I
(2) A computation having one or more occurrences of certain specially

chosen output states, at certain well-defined places in the computed output

sequence, prior to termination. Let these distinguished intermediate states

be denoted by SI(X), for a desired output X. I
(3) A computation satisfying both conditions (1) and (2).

It is assumed that it takes one unit of time to complete a transition.

I
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Similarly, a subset of terminating states corresponding to an Erroneous

I computation may be denoted by SE(y) ST. Also, a computation may be defined I
to be erroneous if no state s£ 6 SI(y) occurs as an intermediate state, at

the proper places, in the course of a computation. The sets Sp(i), SE),
S (y) and ST will satisfy the following set relationships:

I s () U s(y)- ST (33)

iSP (X) n sE. () - '* (34)

and I( n sT  - • (35)

The set, SOP of distinguished initial states may be chosen arbitrarily.

1 For a given input, X i, if fD(-Ki) - Y-i"D is the desired function),

then the probabilities of individual transitions in the Markov chain diagram

I of the net will change as a function of A , such that the probability of

occurrence of a proper computation would be maximized. As the number of

3 states in the diagram increases the number of possible paths for proper, as

well as an erroneous computation will increase rapidly. The variety of ways

in which the different subsets of equations (3: (34) and C35)may be specified

will be very large too. In such cases, it will be desirable to find some

general conditions on the selection of the subsets that will maximize, Pp

and satisfy the inequality (31). At present, we do not have a good under-

standing of this problem. However, it is clear that a theory of self-

I correcting systems must be capable of answering such questions.

I (b) Techniques for Analyzing Model (A)

Convenient techniques for obtaining the probability of occurrence of

a specified event in a stationary Markov chain have been developed by

K. Kaplan18 and J. Sklanaky of RCA Laboratories. In this note we shall

5 briefly explain their procedures in order that the reader may understand

easily the calculations that are to follow :

A Markov chain diagram may be interpreted as a signal flow graph.

where each branch weight will denote the signal &Sin provided to the

signal that is transmitted through the path represented by the branch.

I In case the condition I of Definition 1 is not used this

property need not be satisfied.3 133



At each node, the signals coming into the node through the various paths

of the graph are added up and retransmitted through the outgoing paths of

the node. The sum of the incoming signals is always equal to the sum of

the outgoing signals.

In such a graph, if a unit impulse is injected into a node, say N0,

from an external source, at time 0, one may calculate, using the z-transform

techniques, the magnitude of the signal that will be present at any given

node, say Ni, at a given instant, say n, because of signal transmissions I
through the various paths of the graph. This magnitude of the signal at

Ni, at the instant n, will be equal to the probability of occurrence of the I
following event, in the corresponding Markov chain:

The event that, in an experiment on the Markov chain, starting at time I
0, from a state, say so, represented by the node NO in the graph, the state

si, represented by Ni, occurs at the instant n. j
For a proof of this property and its consequences the reader is I

referred to references l8and 19. Using the above property one may obtain

expressions in closed form, in terms of the individual transition probabilities,

for the various probabilities and expected values values introduced in section 0.

2. Permanent Errors (Type II)

In the case of a permanent failure of a subnet, the ability of a self- I
correcting net to successfully repair the failure will depend upon the number

of alternate subnets that have been provided to the net, a priori. In this I
case, the calculation of the probability of occurrence of a permanent failure

in the total net is straightforward and no special mathematical techniques

are called for.

In the next section we shall introduce three self-correcting nets and i
calculate the various parameters associated with them. These examples are

intended primarily to illustrate the problems involved in the construction

of such nets. Also,an understanding may be obtained of the orders of

magnitude of the different quantities and how they may be changed with changes

in individual output transition probabilities.
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I
3. Description of Some Typical Self-Correctina Nets

The outputs yn and zn of the net,7, in Figure 12 are given by the

I equa tions:

Yn fD (X1) Zn.1 + fD(X -n-1 (13)

i n " f "() Yn-1 + "n-1 (14)

The boxes F1 and GI of the net I correspond to the F and G boxes of Figure
10. Inside F and G the nets D., D2 , D3 and D4 denote the D-nets that

calculate the desired function, fD(). These four nets correspond to the

four occurrences of the function fD ( in equations (13) and (14). Indi-

cating this correspondence more explicitly, equations (13) and (14) may be

rewritten as:I = fD1 ( %i fD2 A *n-I(6Yn ( D W " zn. I 
+  (f _ D 24 '-36)

Zn fD3 ( Yn- + 'D4  n- ( • (37)

The gate, marked C in Figure 12 is a complementing gate. The markings

on the other gates are self-explanatory. In this net, a typical output

state will be a valuation of the pair (y,z).The net has, in all, only four

states, viz: (0,0), (0,1), (1,0) and (1,1). The sets S0 , ST(y) and

i SI(y) for y 0 0, 1, are:

s o  ((0,1), (1,1)).
i*

ST (0) ST () So 0I
SI (0) -(0,0) (38)

and S] (1) (1,0).

i In this case the terminating condition has been chosen as

z an+ 1 ' I - Yn a fD U

and, therefore, the terminating state itself is not used to distinguish between

a proper and an erroneous computation. When y 0 0, a computation will be

* In this case the condition I of Definition I has not been used.
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I
proper only if the state S1(0) - (0,0) occurs as the last but one state of

the computation. So also, when y - I the state S (I) - (1,0) should occur

as the last but one state, for a proper computation. An erroneous compu- 3
tation will occur only if (Zn = I and yn fD( )) for some n - 1, 2, ....

The probability of occurrence of this event will give us the first measure

of reliability of the net, 'J.

Let*
p -(D CI, j - 1, 2, 3, 4 (39)

be the first measure of unreliability for the nets Dj, J - 1, 2, 3, 4 in

Figure 12. So also, let

p'(&) - p'(OR) - p'(C) = (40) I
be the first measure of unreliability of the other gates in Figure12, that

belong to the control part of the self-correcting net. One can show that

the first measure of unreliability of the net F1 will be:

p'(F1 ) < (a + 31) - e say. (41) 1
For the purpose of our calculations we shall choose the upper bound eI as I

equal to p'(FI).

The net G, may cause two types of errors, type A and type B: I
Type A: is the event I

(n1 = 0'yn = fD(-))

This causes a recalculation even though yn w fD( -) , thereby increasing the I
length of a computation. This type of error does not directly cause an

erroneous computation. Let us denote the probability of this event by A' I
Sp'(Dj) Max p where p is defined by:

f : F with probability p,
f (X) with probability (1-p1 ) I

for the input, k.

Ink To be read as zn+1 - 0 given that yn = f-
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Type B: is the event

(zn+1 I Y n f

This error causes the computation to be erroneous. Let, cBJ be the proba-

j bility of this event.

For the net G the probabilities of occurrence of these two events

can be shown to be:

Ip[Z n+1 0 1 Yn a f D x  P(zn*+I , 1 y Yn fD (P- ) < C I (42)

We shall choose in our ensuing calculations

P '(F 1 ) = p'(G 1) (43)

I for the net 1f, of Figure 12.

I The net 3 2 in Figure 13 is a modified form of the net in Figure 12.

in 21 greater redundancy has been introduced in the calculation of a 1n+:

I 5 M z, (44)n+1 = n+1 "-n+l 44

I where 1 I .f + Q) (45)
2n+1 D 3 n + D4 n

I z2 = fD4 Yn + 4 3 • Yn

In this scheme, for a given value of yn both D3 and D4 will be used3 to calculate zn+f . If one of the quantities zn+, i - 1, 2, indicate that

is erroneous (i.e.,zin+ -0 for i - 1 or 2) the computation will be

continued. A termination will occur if and only if both zn+ 1 and zn+1 -

For this net,

SP'(F 2) - C1  (47)

and P(z n.o.n0 1 n a f D < Ci(l - 2 p)(2 - el) + p - e A say, (48)

I n I * y a fD()) < e 2 () + p - e say, (49)
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Fig. 12. The net, described by equationsI

(13) and (14)
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where eI is defined in equation 41. One may notice that EB < E A' Thus, I
in this case, calculations in a computation are likely to be more often

continued than be terminated erroneously. I

In Figures 12 and 13 the feedback input, z, to the F-nets, actually

selects an output from one of the two D nets, D1 and D2 . This selection

process involves the use of additional gates that reduce the first measure

of reliability of the output
"', y, from a at the output of the D-nets to

nearly (a + 3P) at the output of the delay unit (reference to equations (39)

to(41)). In any scheme involving the use of alternate nets the selection

process of the outputs cannot be avoided. However, part of the selection

may be done at the input end of the D-nets, as shown in Figure 14a. In this 3
figure the input, z, is used to activate at a time only one of the two nets:

D1 when z - I and D2 when z 0. When a net is not activated its output

may be assumed to be zero". Thus the output of the 'OR' gate in Figure

14 a will be the same as the output of the net that had been activated. Or

else, the scheme shown in Figure lAb may be used, where a switch has been I
employed to select the appropriate output. If the probability of both D

and D2 being unactivated is ' and the probability of the switches (or the I

(a) (b) I

MI

Fig. 14 Illustrating the use of z as an I
actuating signal.

Note that the reliability of a net is considered to be the same as the

reliability of its output. I

In a typical net, in practice, the activation of a net may be caused by

providing the power supply necessary to operate a net. When no power

is supplied to a net, its output has to be zero in the steady state.
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OR gate) making a wrong selection is 3 then the first measure of reliability

of the output y will less than (a + p + y). If more than one feedback line

were available then more than one D net may be actuated in each calculation.

In such a case, the output selection may be more profitably done by a ma-

jority gate instead of an OR gate or a switch. The use of a majority gate

for output selection will result in a considerable improvement in reliability.

Table III is a sumary of the different probabilities of F and G units in

I Figures 12 and 13.

Table III: The Probabilities Associated with the Subnets
of Figures 12 and 13.

Subnet Probability

Di p#(D) a for all i

Any control

gate-.&, OR, P'(&)IC, etc.

F of Fig. 12 p'(F 1 ) C a + 313

G of Fig. 12 p'(G 1 ) e1 - A - co + 30

F2 of Fig. 13 p'(F2 ) C I - a + 313

of Fig. 13 P(Z - 0 I n fD( x ) C W (I0-20)(2-e) + 1

I Pz 1 . i y +ol) CB - I2(1-21) +

4. Analysis of the Nets Described in Section 3.

The Markov chain diagram for the nets 7 and 1 of Figures 12 and 13
1 2 o igrsad3

will be as shown in Figure 15. The transition probabilities, shown in

Figure 15are for the case: fD(A) - 1 and initial state, (0,1).

I
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E16 8  0,

Fig. 15 Markov chain diagram for the nets"f1 and *2 1
for the case: Initial state (0,1) and f (A) 1.

The probabilities ei 11 'A ' in Figure 15 are-given in Table III and iq, 8 are

given by:

iq l-I - (CI + E 5 + 61  CB) (53)

and I - (C!  + EA + C I A) (54)

The probabilities I and 6 indicate the correct transitions, as given in J
Table I, for the case, fD(l) - I (rows 1, 3, 5, and 7 of the table). The

weight eI indicates an erroneous transition -- not as required by Table I I
-- where the output, y, in the 'next state' is in error. The weights CA

and e indicate that the outputs z in the 'next states' are in error, the

errors being of type A in one case, and type B in the other. The weights

cI " eA and e, ' CB indicate that both y and z are in error in the 'next i
states' of the transitions. As the state, (1,1), in Figure 15 will always

be a terminating state, no transitions are shown emanating from the state.

Using Table I and the error-probabilities shown in Table III the

See Table III for definition of A and C. B
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I
Markov chain diagram for any initial state and output value may be similarly

Idrawn. In Figure 15, for example, if the states (1,0), (0,0) are transposed

and, so also, (1,I), (0,I) are transposed the resulting diagram will repre-

I sent the case: fD(-) - 0 and initial state, (1,1). One may verify that

the basic structure of the diagram for all possible initial and output states

remains the same. Thus, the probabilities of proper, and erro'neous compu-

tations calculated for Figure 15 will remain unchanged for other cases also.

Using the z-transform techniques and the analogy of signal flow graphs,

one may obtain the following expression for the different statistical quanti-

ties associated with the Harkov chain diagram of Figure 15. Let,

P p(1) *a P p(z) (55)

1-2p

and

Pe() z-' - e(z) (56)
2- e

Assuming that the length of each computation is > 2, we get that,I
P p(1) - Pp (57)

i and

Pe(1) - Pe (58)

3 For the Figure 15,
A (8 + )

P (Z) (59
(()- e - jC 1) -2 (59)

P (I1-4E Z-1 )(1-EA z -q C, EA z
1

I -1 -I
E I z (1-E A zl(1-0r)) EB(I + IE)I (e(Z) " 21  (60)

(-1 z')( 1 -cA z - ) -€ A T
I 2 I- AA

E(2p) I A 1 A (I-ij) (61)
p 1-E -CE +C C 1
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V( E + 2 - E1 EA (1"T)(4EI - E A)(62 I
(1c 1 - CA + E I E (1 -)) I

E( -+ A (A3)(2-A))
e ( 1E.B 00))(1.l - EA + E1 EA(l - ))

E! + ,A (5TI-4) - 8EA 2 (1 -I) 2 i

V(1e) - ( 1 "A))2 (l-E A ) (64)

(l-E B C1l-0I) (i-EI - E A + E I EA0i -1))

I
The values of Pp () have been plotted in Figure 16 for various values

of the parameters a and k where, I

k - a/, (65) 1
C and 0 are defined in Table III. In a sense, 'k' is a measure of the f
relative complexity of the D-nets in Figures 12 and 13 as compared to the

individual control gates -- AND, OR or C. The larger the value of k is, one

may say that the greater would be the complexity of the D-nets as compared

to the individual AND, OR or C gates. One may notice that in the net, '2j

the computations tend to be longer.

The values of Pp, Pe, E( p) and E(e) are tabulated in Table IV. One j
may notice that for k - 1, there is a loss in reliability for a - .05. When

k = 10 the gain in reliability is ignificant. Also, in all cases the net, i
2 , gives greater improvement in reliability at the 

cost of increased

average delay time for computation.

It may also be seen that in all cases E(e) E( p). This does not

satisfy the condition given in inequality (30). It remains to be seen 3
whether it is possible to satisfy (30) through the use of this scheme of

self-correction, and if it is, what the requirements on the feedback net

will be.
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Table IV: Calculated Values of PO, Pe E( ) and E e )

I P Pe E(2) E(Ie)p e
a k

__ 1 2 1 2 1 2 1 2

0.05 1 .91095 .96743 .08905 .03257 2.5906 3.0050 2.4942 2.6846

I 10 .9945 .99952 .0055 .00048 2.148 2.236 2.139 2.209

100 .99967 .99996 .00033 .00004 2.114 2.117 2.108 2.1613

0.01 1 .99981 .999949 .00019 .000051 2.086 2.144 2.083 2.134
10 .999983 .999986 .17x10 "4 .14x1 -  2.026 2.041 2.026 2.0

100 .999983 .999986 .11x10- .14x10-5 2.026 2.041 2.026 2.040
-4 -5 2.*021 2.031 2.020 2.031

100 .999989 .999999 .11X10 .I0x10

I 0.001 1 .999984 .999995 .16x10 4 .41x10 5 2.008 2.013 2.008 2.013

10 .999998 .9999999 .17x10 .13x10 2.002 2.004 2.002 2.004

1 100 .9999989 .99999999 .11x10 5 .1x10"7 2.002 2.003 2.002 2.003

I
The nets a1 and 72 of Figures 12 and 1; respectively, do not provide

much protection against permanent failures. No redundant gates have been

provided in the control network. As the control gates are simple AND, OR

gates, one may introduce redundant gates through the 'triangulation' scheme

of Levy16 and Amarel. 15 Let us assume that such a scheme has been used and

the probability of permanent failure of the control part of the F and G

nets is, p"(c), in l and 2

Let us now consider the failure of one of the D-nets. In the F-nets

of both Figures 12 and 13 failure of either DI or D2 will not cause a failure

of the total F-net. The self-correcting feature .-- namely, the substitution

of an alternate net in place of an erroneous one -- will assure us of the

correct output in each computation. Thus the F-nets of %,and Iwill fail

only if both D1 and D2 fail, or the control part of the net fails. There-

fore, *

p" is the second measure of unreliability.
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Fig8. 16 Plots of probabili1ty of correct computation against
length of the computations for various values ofC. and k, for the nets f and 02"
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I p" (Fi) = {p"(D))2 + p"(C), i - 1, 2 (66)

for the nets and2

In the case of the G-nets of Iand '11failure of either D3orD4
will cause a failure of self-correcting property. Further, if z gets stuck

at 0, no computation will ever terminate. So,

l p" (Gi) p"(D) + p"(C), i - 1, 2 (67)

However, when D3 fails the nets2 and will operate properly forI3
the output y - 1, and also, when D4 fails, proper operation will be available

for y - 0. Unless z gets stuck at 0 the overall nets 7 and 12 may still beIused, even though the self-correcting feature will be absent for some outputs.
The probability of z getting stuck at 0 will be less than p"(D) + p"(C). Thus,

j some improvement will be obtained in the overall reliability of the nets 71

and 72 . In general, one may choose a weighted sum of p"(Fi) and p"(Gi) for

I p"(li), i - 1, 2:

c( ) p"(Fi) + c p"( )  (68)
I cF i  CG i

for i - 1, 2, where c - 1 and cG < 1, are constant coefficients.

The above discussion was intended only to illustrate the techniques

j of calculation and relative values of the various parameters that may be

associated with a self-correcting net.

One may intuitively see that there exists a great variety of possi-

bilities in which such nets may be constructed when the number of feedback

lines is large. A greater understanding of the subject will have to be

developed before a definite conclusion may be made about the practical

3 applicability of the scheme of self-correction, introduced in this report.
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